bound4blue®

CINEA Green Shipping Workshop

Online, 8th December 2022

Cristina Aleixendri COO of bound4blue

info@aspiringwingsails.com

PROJECT OVERVIEW

Aspiring Wingsails – Project Overview

A

-

3º GI-4-2182

BALUEIRO SEGUNDO

Project overview

- Acronym: ASPIRING WINGSAILS
- Full title: FULL-SCALE DEMONSTRATION OF AN ASPIRING WINGSAIL SOLUTION WHICH REDUCES FUEL USE AND POLLUTANT EMISSIONS IN MARITIME TRANSPORT THROUGH WIND ENERGY CO-PROPULSION
- Coordinator: Bound 4 Blue, S.L. (Spain)
- Beneficiaries: Kyma A/S (Norway)
- Duration (start date/end date): 31 months (October 2019 – May 2022)

The problem and regulations and initiatives to help to solve it

The shipping and fishing industries need technological innovation to achieve large reductions in global GHG emissions while reducing the economical impact.

High fuel consumption

Fuel accounts between 30% and 60% of the vessels OPEX depending on fuel costs and vessels types and sizes, being the highest operating expense.

International environmental regulations

The IMO (International Maritime Organization) is setting environmental regulations that are forcing shipowners and ship operators to switch to alternative fuels, which are expected to cost 3 to 10 times more.

EU Initiatives

Fuel EU Maritime Initiative Expected to stimulate the uptake of sustainable maritime fuels and zero-emission technologies (adopted by the European Parliament during October 2022 plenary session in Strasbourg)

Objectives

MAIN OBJECTIVE

The specific objective of the project was to provide the fishing and the maritime sectors with a novel aspiring wingsail suitable for vessels which do not require a foldable solution while offering up to 30% savings in fuel use, reducing CAPEX (hardware costs) and making the solution accessible to more vessels.

SPECIFIC OBJECTIVES

- Design of an up-scale, customised full-scale demonstration eSAIL system and its construction.
- Updated design and up-scale of the automated control system.
- Installation of the eSAIL on the fishing vessel.
- Demo/testing journeys.
- Turn-key solution standardisation.
- Internationalisation.

Consortium and tasks developed by each member

- Project promoter and coordinator
- eSAIL development and manufacturing
- eSAIL installation on the ship
- Performance evaluation

- Development of the fuel savings monitoring system
- Monitoring system installation
- Performance evaluation

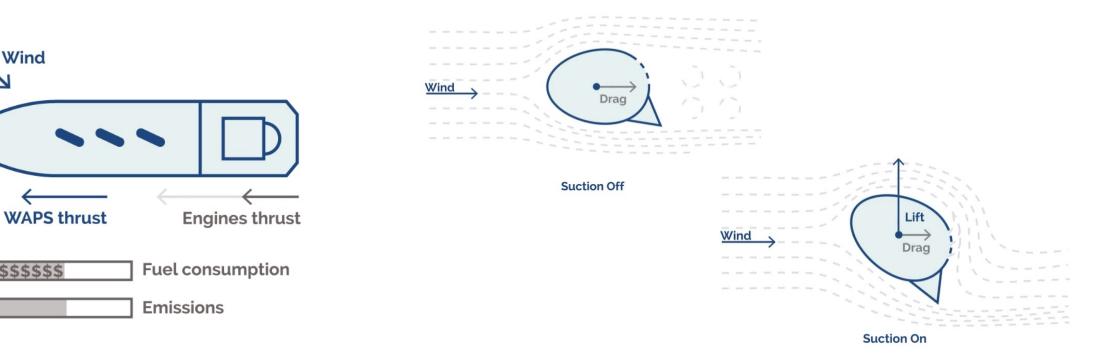
Technology developed in the project \rightarrow eSAIL[®]

eSAIL® constructive drawings & first real scale unit being manufactured

First eSAIL[®] unit ready for installation (Left: our facilities in Spain / Right: Shipyard in Panama)

First 12-meter eSAIL® unit being installed at the shipyard (Panama)

How the technology works

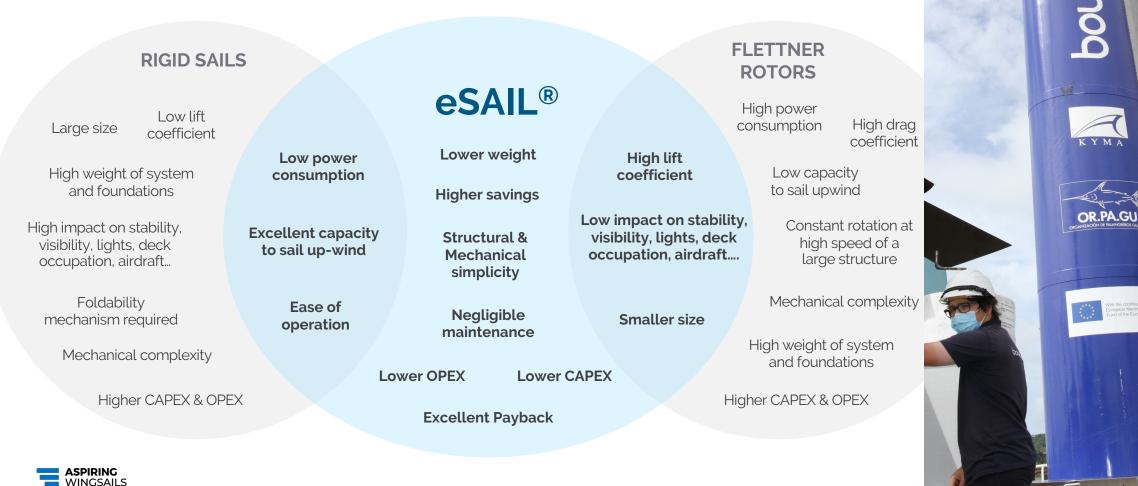

WAPS (Wind-assisted Propulsion System)

Wind

Wind propulsion creates a propelling force from the available wind lowering the required load on the main engine, which reduces its power requirements, its fuel consumption and its pollutant emissions.

eSAIL[®]

When the suction is activated, a small amount of air is sucked in, which readheres the airflow to the sail, generating enormous amounts of lift with low drag and producing 6-7 times more lift than a conventional sail, with minimal power consumption and no mechanical complexity.



SPIRING WINGSAILS

PROJECT OVERVIEW

eSAIL[®] competitive advantages

The **eSAIL® combines** the <u>advantages</u> of regular rigid sails and flettner rotors, avoiding its disadvantages, outstanding over both.

Our technology can be used with alternative fuels

2 DNV GL - Maritime Assessment of selected alternative fuels and technologies

PACKGPOUND

TABLE OF CONTENTS

ASSESSMENT OF SELECTED ALTERNATIVE FUELS AND TECHNOLOGIES

June 2019

3	INTRODUCTION TO ALTERNATIVE FUELS AND TECHNOLOGIES	4
3.1	Which fuels are alternatives?	
3.2	CO ₂ emissions	
3.3	NO _x emissions	9
3.4	Overall emission behaviour	10
3.5	Some thoughts on fuel pricing	11
3.6	Fuel availability	12
3.7	Concluding remarks	_13
	Alternative fuels	14
	Alternative technologies	15
4	INTERNATIONAL REGULATIONS AND CLASS RULES	16
5	ALTERNATIVE FUELS AND TECHNOLOGIES - A BRIEF OVERVIEW	17
5.1	Principles	17
5.2	Reference fuels - HFO and MGO	18
5.3	LNG	_20
5.4	LPG	23
5.5	Methanol	25
5.6	Biofuels	27
5.7	Hydrogen	30
5.8	Power to fuel (PtoF): Sythetic fuels from hydrogen and carbon or nitrogen	34
5.9	Wind-assisted propulsion	38
5.10	Batteries	41
5.11	Fuel cells	44
6	WE SUPPORT YOU TO MAKE THE RIGHT DECISION	48
7	DNV GL CLASS SERVICES	50
	ANNEX: ENGINES FOR GAS-FUELLED SHIPS ARTICLE	52
		A second

"For thousands of years, wind was the primary energy source used to propel ships, apart from manpower. Today, wind-assisted propulsion is understood to be a **potential method of reducing the fossil-fuel-based energy consumption of ships**. Wind is an inexhaustible source of energy."

DNV-GL

SAFER, SMARTER, GREENER

The techology is being extrapolated to other segments

Moving the fishing and shipping industries closer to sustainability

FISHING SEGMENT

Installation #1

Co-funded by the European Unio

SHIPOWNER: OR.PA.GU

SHIPOWNER: Amasus Shipping

RO-RO SEGMENT

Installation #4

SHIPOWNER: Louis Dreyfus Armateurs

Installation #5

pound-ublue SEPECEPSIE EPEDER CRIMSON KINGDOM

Marubeni

<u>SHIPOWNER</u>: Marubeni

CONFIDENTIAL $^{\odot}$ Copyright Bound 4 Blue SL | 16

ASPIRING WINGSAILS

boundyblue

CONTACT

Cristina Aleixendri COO of bound4blue info@aspiringwingsails.eu FOLLOW US!

aspiringwingsails.eu

@aspiringwingsails