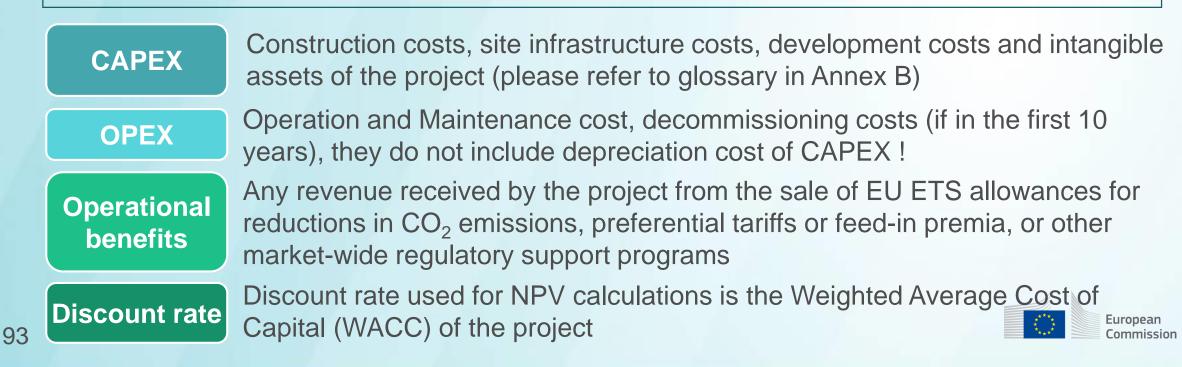


Innovation Fund


Call for Large-Scale projects 2021 - Relevant cost calculation

Christophe Dehout and Alexandre Cobbaert, CINEA A1

Definitions

Relevant costs ("RC") = "difference between the best estimate of the CAPEX, the NPV of OPEX and operational benefits arising during 10 years after the entry into operation of the project compared to the result of the same calculation for a conventional production with the same capacity in terms of effective production of the respective final product."

Which methodology should applicants use?

Relevant costs are "additional costs" borne by applicants as a result of the application of the innovative technology related to GHG emissions avoidance

Methodologies

Levelised cost: for most projects RC should be based on the difference between the levelised cost of producing an output unit with the new technology compared to the cost of producing a reference product, using its current market price ("reference price")

Reference plant: "fall-back" option in case the project includes processes generating intermediate or multiple products, or where market prices cannot be easily established and no substitute products exist and internal cost data deliver more reliable results

94

No reference scenario: "last-resort" option in exceptional cases if there is no reference product or conventional technology available as reference to compare the project with

Levelised cost methodology

- "Default" methodology
- General principles: if identifiable final product and existence of a product reference price
- <u>Approach</u>: based on levelised unit cost, which is cost of one unit of production over the full project lifetime. Note that financing costs are captured by the WACC
- Suitable for most projects using different variants of the methodology:
 - Energy/electricity generation •
 - Product manufacture from energy intensive industries •

- Manufacture of innovative renewable or storage technology components from a new production facility •
- Electricity storage •

Reference plant methodology

- "Fall back" methodology
- <u>General principles</u>: existence of a reference plant (ETS benchmark installation in the case of industrial products or fossil fuel equivalent for renewable electricity/heat) and reliable cost data for the reference plant
- <u>Approach</u>: based on project CAPEX, OPEX, Operational Benefits and Revenues compared to the best estimate of the same parameters of a Reference Plant using conventional technology and with similar product and similar location to the project, where applicable. Revenues defined as all sources of revenues generated by the project, excluding operational benefits and external benefits outside the project boundary.
- Suitable for projects where market prices cannot be easily established and no substitute products exist and where internal cost data deliver more reliable results

3 No reference plant methodology

"Last resort" methodology

- <u>General principles</u>: no comparable conventional reference plant exists either in the EU (EU ETS benchmark installation for industrial products) or globally; and no reference product exists
- <u>Approach</u>: based on the best estimate of CAPEX and NPV of OPEX, Operational Benefits and Revenues arising over the first ten years of operation.
- "Last resort" for projects where no reference product or conventional technology is available as reference

General assumptions applicable to all methodologies

Carbon price and OPEX inflation

- Carbon price: applicants are instructed to use average price of 2020 and 2021 (EUR 34/tCO₂). However, they could use higher carbon prices if deemed appropriate and with a justification provided. Evaluators to consider whether the assumptions are realistic.
 - OPEX inflation: average of 2019 and 2020 to be used based on harmonised indices of consumer prices (HICP) of Member States in Annex B. The projections should be consistent with those used in the financial model

Non-eligible costs

- Terminal value: no value beyond the asset useful lifetime
- Stranded assets: write down of assets related to existing technologies are excluded
- Decommissioning costs: acceptable if during first ten years (e.g. for demo projects)

Levelised Cost of Energy (LCOE)

Approach

Generates unit cost over the project lifetime which is compared to the reference price

Reference

Reference price is the long-term market price for either power or heat. Default choice is <u>two-year historic average price</u>, but applicants may propose alternative if appropriately justified

Formula

LCOE = [present value of the costs over the full project lifetime]/discounted number energy units produced (MWh) over the full project lifetime

$$LCOE\left[\frac{\notin}{MWh}\right] = \frac{CAPEX + \sum_{n=1}^{N} \frac{O\&M \ cost}{(1+r)^n} + \sum_{n=1}^{N} \frac{Fuel \ cost}{(1+r)^n}}{\sum_{n=1}^{N} \frac{Elec_{Produced}}{(1+r)^n}}$$

Note: no fuel cost in most renewables projects

Where: r = discount rate (WACC)n = the yearN = lifetime

Levelised Cost of Product (LCOP)

Approach

Same approach as LCOE

Reference

Same as for LCOE except that reference price is now the long-term market price for the product the project is seeking to compete with or displace. Default choice is 2-year historic average price

Formula

LCOP = [present value of the costs over the full project lifetime]/discounted number product units produced over the full project lifetime

$$LCOP\left[\frac{\in}{Product}\right] = \frac{CAPEX + \sum_{n}^{N} \frac{O\&M \ cost}{(1+r)^{n}} + \sum_{n}^{N} \frac{Fuel \ cost, Materials \ cost \ etc.}{(1+r)^{n}}}{\sum_{n}^{N} \frac{Units_{Produced}}{(1+r)^{n}}}$$

Where: r = discount rate (WACC) n = the year N = lifetime European Commission

Levelised Cost of Storage (LCOS)

Approach

Similar approach to LCOE/LCOP

Reference

Electricity storage technologies can be used in numerous applications. In contrast to LCOE and LCOP, the methodology incorporates revenue streams from each specific storage 'use case' to determine the reference price (based on current prices and volumes for each service)

Formula

LCOS = [present value of the costs over the full project lifetime]/discounted discharged electricity (MWh) for a specific storage technology and application over the project lifetime

$$LCOS\left[\frac{\notin}{MWh}\right] = \frac{CAPEX + \sum_{n}^{N} \frac{O\&M \ cost}{(1+r)^{n}} + \sum_{n}^{N} \frac{Charging \ cost}{(1+r)^{n}}}{\sum_{n}^{N} \frac{Elec_{Discharged}}{(1+r)^{n}}}$$
101

Where:

- r = discount rate (WACC)
- n = the year
- N = lifetime

European Commission

OPEX adjustment to the Levelised Costs

- <u>Rationale</u>: to be in line with the IF Delegated Regulation, the share of OPEX after 10 years has to be excluded from the relevant costs calculation.
- <u>Approach</u>: estimate the share of the project's discounted OPEX beyond 10 years out of the sum of CAPEX and discounted OPEX over the project lifetime ('discounted costs'). To derive the relevant costs, use this percentage to adjust the discounted costs of the project and of the reference scenario.

Reference plant (*)

Approach

- Establish the reference plant based on the product produced, not sector
- Use benchmark plant under the EU ETS if such a plant exists
- In first instance from Member State where project is located, or else a EU installation or, if that does not exist, internationally

Formula

RC = difference in CAPEX and NPV of OPEX net of Revenues and Operational Benefits over a 10-year period between the project and reference plant

European

Commission

Relevant costs

- = (project CAPEX reference plant CAPEX) + (PV project OPEX PV reference plant OPEX)
- (PV project Operational Benefits PV reference plant Operational Benefits)
- (PV project Revenues PV reference plant Revenues)

10

3

(*) Fall-back methodology when no reference unit cost or reference product price is available

No reference plant (*)

Approach

Mimics the reference plant model approach, however applicants do not include reference plant data

Formula

RC = best estimate of CAPEX and NPV of OPEX net of Revenues and Operational Benefits of the project over a 10-year period

Relevant costs

= project CAPEX + NPV (project OPEX - project Operational Benefits - project Revenues)

(*) Last resort methodology when conventional production does not exist. Applicants must justify in detail why it was not possible to apply another methodology

LCOP hypothetical project - Key inputs (1)

Capacity	100,000	tpa
Reference price	100	EUR/ton
Premium to reference price	10	EUR/ton
Date of financial close	31-Dec-22	
Construction costs	25,000	EURk
Construction period	1	year
Project lifetime	20	years
	Construction	Operation year 1
Production ramp up	0%	100%
Cost indexation	2%	

Key

inputs

LCOP hypothetical project - Key inputs (2)

Key inputs

Operational benefits		
Carbon emission allowances sold	2,660	Tons/year
Carbon price	34	EUR/ton
Operating costs - variable		
O&M and other variable costs	10	EUR/ton
Feedstock	50	EUR/ton
Total	60	EUR/ton
Operating costs - fixed		
Fixed opex	1,500	EURk/year
Total opex	7,500	EURk/year

Maintenance capex

No maintenance capex assumed

LCOP hypothetical project – use of WACC

- Step 3: Determine the number of units forecast to be produced by the project over the lifetime of the project
- **Step 4:** Discount the OPEX and units produced over the project lifetime using the WACC (see table)
- Step 5: Divide the CAPEX plus Present Value of the OPEX (the "total Discounted costs") by the total discounted Units produced over the full project lifetime (the "Levelised cost")

WACC calculationCost of equity14.0%Cost of debt4.0%Equity percentage40.0%Debt percentage60.0%Corporation tax rate28.0%

WACC	7.33%
------	-------

LCOP hypothetical project – cost difference

• Step 6: Establish the difference between the:

a) Levelised cost calculated for new product (115.59 EUR/ton)

b) Reference product price (100 EUR/ton); and

c) Adjustment for green price premium (10 EUR/ton)

= 5.59 EUR/ton

Discount rate (WACC)	7.33%
Discounted costs	111,246 EURk
Lifetime production discounted	962,398 tons
Levelised costs	115.59 EUR/ton
Reference product price	100 EUR/ton
'Green' price premium	10 EUR/ton
Difference	5.59 EUR/ton

LCOP hypothetical project – relevant cost

- **Step 7:** Multiply the cost difference (EUR 5.59/ton) by the discounted units produced over the full project lifetime
- Step 8: Calculate percentage of discounted costs that the discounted OPEX after 10 years of operation represents
- Step 9: Multiply difference by 1-OPEX % after 10 years to derive the relevant cost = EUR 3.8m
- Step 10: Apply IF's 60% maximum intervention rate to relevant cost to derive project's maximum grant award level = EUR 2.3m

Opex adjustment (substract OPEX percentage after 10 years)				
Date after 10 years of operations	31 Dec 33			
NPV of Opex beyond 10 years	32,384	EURk		
Percentage of discounted costs	29.1%			
Cost gap	5.59	EUR/ton		
Lifetime production discounted	962,398			
Relevant Cost	3,816	k EUR		
Maximum IF grant	2,289	k EUR		

Weighted Average Cost of Capital (WACC)

Key principles

- WACC is applied to discount future revenue income and cost streams over the project lifetime to make them comparable
- Applicants should calculate a project WACC based on cost of equity and cost of debt

Formula

$$WACC = E/V * Re + D/V * Rd * (1-Td)$$

Re = cost of equity Rd = cost of debt E/V = equity portion of total capital (Equity over total Value) D/V = debt portion of total capital (Debt over total Value) Td = Tax rate

Weighted Average Cost of Capital (WACC)

Approach

- Cost of equity:
 - $Re = Rf + (\beta * MRP) + IP$
 - Rf = risk free rate
 - $\succ \beta$ = beta of the project
 - MRP = market risk premium
 - IP = innovation premium

Cost of debt:

Rd = base rate + credit spread

Estimation

Equity return expectations typically are in the **8-16% range**

- <u>Rf</u>: data from Eiopa¹ or LT Government yield of country of operations
- <u>β</u>: take the sector average beta. Please refer to IF call Annex B (in annex 2) or Damodaran's website². For simplicity we assumed the standard leverage of the sector to be similar to the project
- <u>MRP</u>: Damodaran's website^{2.}
- <u>Innovation premium</u>: if innovation leads to risks that go beyond the conventional sector. As default, a value of 3% should be applied

- <u>Base rate</u>: bank lending rate consistent with the average maturity of the project debt. Please note that even if swap rates can be negative, banks will not lend money at negative rates
- <u>Credit spread</u>: default range of 150 to 650 basis points over base rate, or else use the credit spread of BBB- to C

1) <u>https://www.eiopa.europa.eu/tools-and-data/risk-free-interest-rate-term-structures_en)</u>

2) <u>http://pages.stern.nyu.edu/~adamodar/</u>

