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Executive Summary 
 
This report presents a review of the research knowledge and gaps on fish populations, 

fisheries and linked ecosystems in the Central Arctic Ocean (CAO). The CAO comprises 

the deep basins of the Arctic Ocean beyond the shelf break, which largely overlap with 

the High Seas of the Arctic Ocean, i.e. the marine areas outside the Exclusive Economic 

Zones (EEZs) of the Arctic coastal nations. The authors of the report are members of the 

European Fisheries Inventory in the Central Arctic Ocean (EFICA) Consortium. This study 

was funded by the European Commission as an EU contribution to the international 

cooperation within the Agreement to Prevent Unregulated High Seas Fisheries in the 

Central Arctic Ocean. 

The report contains desk-based research, using scientific research data bases as well as 

any available research performed by the EFICA Consortium partners and EU institutions 

or others. In Chapters 2-8 the authors review the literature and identify specific 

knowledge gaps. The gap analyses involve comparisons of actual knowledge with desired 

knowledge on the fish stocks of the CAO to be able to evaluate possibilities for future 

sustainable fisheries in the area. Chapter 1 is an introductory chapter, and Chapter 9 

presents a holistic gap analysis based on Chapters 2-8 and recommendations for 

research priorities and the next steps.  

The critical gap analysis highlights that the knowledge gaps for the CAO are enormous 

and obstruct any quantitative analyses of its fish stocks. This agrees with the conclusions 

from the Fifth FiSCAO Report (FiSCAO 2018). While data for the physical environment in 

the CAO (oceanography, bottom topography and ice-cover dynamics) would be sufficient 

for fish stock modelling and assessment, there is a massive lack of biological and 

ecological data. The CAO is not a closed system and some aspects of the shelf seas are 

of high relevance for the CAO, notably connectivity of fish stocks and fish species moving 

north with climate warming. Scientific research and monitoring programs are established 

in the shelf seas, and new data are constantly being produced.  

Fish stock data are available from scientific projects and monitoring programs for some 

of the shelf seas (Barents Sea, Bering Sea, and to a lesser extent for the Beaufort Sea 

and the Chukchi Sea). Data exist also for the Russian shelf seas (Kara Sea, Laptev Sea, 

East Siberian Sea), but these data are not internationally available, while for the areas 

north of Canada/Greenland data are missing; they do not exist because of the severe ice 

conditions there. More data from all shelf seas may be hidden in reports that are not 

publicly accessible. We recommend to make current knowledge generally available by 

translating key publications and identification of valuable data reports. 

Research priorities comprise the collection and analysis of primary data in the CAO, and – 

to a limited extent – from adjacent waters through collaborations with other Signatories 

of the Agreement (e.g. on population genetics). Further research priorities include an 

evaluation of ecosystem vulnerability, social-ecological analyses, i.e. recognizing the 

close and often complex interactions between humans and nature, and recommendations 

for governance of the CAO. Fulfilling the 14 specific research priorities mentioned in 

Chapter 9 to “sufficient knowledge available” could enable the potential, future 

application of an Ecosystem Approach to Management for the CAO. 
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Chapter 1. Current status, climate change and possible future fisheries  
Pauline Snoeijs-Leijonmalm (SU), Hauke Flores (AWI) 

 

1.1. Chapter summary 

With the disappearance of the summer sea-ice cover and increasing territorial and 

commercial interests of governments and companies, the need for scientific advice on 

management of the Central Arctic Ocean (CAO) ecosystem, including potential fisheries, 

becomes urgent. Today there are no fisheries in the CAO because, except in some 

marginal areas for a few weeks in summer, the area is still inaccessible for fishing 

vessels. The Agreement to Prevent Unregulated High Seas Fisheries in the Central Arctic 

Ocean1 (hereafter referred to as “the Agreement”) aims to prevent commercial fisheries 

in the CAO while scientific mapping and monitoring of potential fish stocks is carried out. 

These research activities are now starting up with the aim to map the existing potentially 

exploitable fish stocks and to explore possible future sustainable fisheries in the CAO.  

 

1.2. Background 

The 3.3 million km2 Large Marine Ecosystem (LME) around the North Pole, the Central 

Arctic Ocean (CAO; Figure 1.1), is a prominent blind spot on the map of the Earth’s fish 

stocks. The reason for the absence of data from the CAO is obviously the difficulty of 

accessing this remote cold area for on-site research due to its perennial 2-3 m thick ice 

cover. However, observations demonstrate that the Arctic sea ice cover has been in rapid 

decline over the last decades, and climate models predict a further decline, with ice-free 

summers starting to appear already within the next few decades (Duarte et al 2012, 

Screen & Williamson 2017). The speed of the Arctic sea ice reduction depends largely on 

political decisions made (Serreze & Meier 2019). The rapid environmental changes in the 

CAO create new opportunities for human activities that may impact ecological and social 

values, including potential future commercial fisheries. Most of the CAO belongs to the 

“High Seas” area, i.e. being located beyond waters underlying national jurisdiction of the 

Arctic coastal states. Both the CAO and the Arctic High Seas consist mainly of deep 

abyssal plains and ridges, but the High Seas also contain a small portion (3 %) of 

continental shelf (Figure 1.1, see also Chapter 2). Commercial fishing does not occur in 

the CAO today, because the yearly ice-free time window is still locally confined and short. 

Furthermore, fish resources of potential commercial value have so far not been detected 

in the CAO. 

Exploitation of newly accessible natural resources tends to precede scientific research 

and effective management measures, and especially internationally shared fish stocks in 

High Seas are prone to overexploitation (McWhinnie 2009, Christiansen et al. 2014, van 

Pelt et al. 2017). Therefore, a precautionary approach has recently been taken for the 

CAO before any exploitation of its fishery resources has taken place. In October 2018, 

nine countries (including the five coastal states) and the EU decided to put “science first” 

and abstain from engaging in commercial fishing for the next 16 years by signing the 

Agreement1 (Hoag 2017, Van Pelt et al. 2017). The Agreement will enter into force when 

all 10 signatories have ratified it. By October 2019, the Agreement was ratified by 

Russia, EU, Canada, USA, Japan and South Korea, while ratification of the four other 

Signatories is expected in 2020. 

                                                           
1 Agreement to prevent unregulated high seas fisheries in the Central Arctic Ocean (Official Journal of the European Union L 73, 15.3.2019, 

pp. 3-8) 

https://eur-lex.europa.eu/legal-content/EN/AUTO/?uri=celex:22019A0315%2801%29
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Figure 1.1. Bathymetric map of the Arctic 
Ocean (Jakobsson et al. 2012), showing the 

location of the Central Arctic Ocean (CAO) 
Large Marine Ecosystem as defined by the 
Arctic Council (PAME 2013) (white line) and the 
High Seas area (yellow line). The CAO is 

defined based on ecosystem characteristics 
(the oligotrophic deep basins of the Arctic 
Ocean and ingoing ridges) while the High Seas 
are defined as the area north of the Exclusive 
Economic Zones of the coastal states of the 
Arctic Ocean. The surface area of the CAO is 
ca. 3.3 million km2 and that of the High Seas is 

ca. 2.8 million km2.  

 

During the preparatory phase of the Agreement, scientific advice to the Signatories was 

provided by five ad-hoc meetings of the expert group for Fishes in the Central Arctic 

Ocean (FiSCAO), consisting of scientists from the countries involved (FiSCAO 2017, 

2018). During the First Preparatory Meeting of the Signatories to the Agreement to 

Prevent Unregulated High Seas Fisheries in the Central Arctic Ocean in Ottawa, Canada 

(29-30 May 2019) it was decided that, until all Signatories have ratified the Agreement, 

an interim Provisional Scientific Coordination Group (PSCG) would be installed to 

organize the Mapping and Monitoring Program. The first meeting of the PSCG is planned 

to take place in Ispra, Italy on 11-13 February 2020. In November 2019, a workshop 

was held in Yellowknife, Canada2 on the processes and mechanisms to include local and 

indigenous knowledge into the Mapping and Monitoring program of the Agreement. 

The EFICA Consortium contributes to the Mapping Program of the Agreement by joining 

two expeditions with the RV Polarstern and the RV Oden to the CAO in 2019-2020. Using 

already planned oceanographic icebreaker expeditions to the CAO is a pragmatic and 

relatively inexpensive approach to collect crucial fish data to fulfil the requirements of the 

Mapping Program and perhaps also for the future Monitoring Program.  

Besides studies in the CAO itself, there are several aspects in which existing monitoring 

data in the gateways and shelf seas of the Arctic Ocean can be used for better 

understanding and predicting future developments of the fish stocks in the CAO. The two 

main uses of monitoring data are on (1) connectivity between fish stocks (coastal 

spawning areas) and (2) northward movement of fish species to the CAO with climate 

change. This requires a detailed review of the existing literature about northward 

migrations (see Chapter 6). Data on spawning areas needs to be extended but that can 

only be done if we know which species occur in the CAO. We expect possible CAO fish 

stocks of commercial interest to be Boreogadus saida (polar cod) and Arctogadus 

                                                           
2 Workshop on the Co-Development of Indigenous Knowledge for the Central Arctic Ocean Agreement, 13-14 November 2019, 

Yellowknife, Canada 
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glacialis (ice cod), but we cannot be sure (see Chapters 3 and 4). Both are single 

species in their genus and are referred to as Boreogadus and Arctogadus, respectively, 

hereafter. To understand the ecology of the potential fish stocks in the CAO and their 

possible future sustainable harvesting, it is also necessary to identify their role in the 

food web (see Chapter 5). 

 

1.3. The CAO ecosystem is changing extremely fast 

Global warming and ocean acidification change the habitats of the cold-adapted 

organisms living in the Arctic, with the risk of exterminating unique biodiversity. Human-

induced emissions of greenhouse gases (primarily carbon dioxide, methane and nitrous 

oxide) affect the balance between energy entering and leaving the Earth’s system 

resulting in global warming, melting of sea-ice (which increases heat absorption by the 

Arctic Ocean), and associated climate change (IPCC 2013). Approximately 27 % of the 

carbon dioxide released to the atmosphere every year is absorbed by the oceans. This 

keeps the atmosphere from warming as much as it otherwise would, but results in ocean 

acidification (i.e. decrease of seawater pH and carbonate ion concentration due to CO2 

absorption). In the Arctic region, climate change and ocean acidification take place 10-

100 times faster than at any time in the past 65 million years. The Arctic region is 

warming faster than the rest of the globe, a process called Arctic amplification (Figure 

1.2), caused by (1) decreased albedo when the sea ice disappears and (2) increased air 

and water transport from lower latitudes. Models agree on the Arctic amplification and on 

the loss of the summer sea ice in the CAO in this century, but disagree on both the 

magnitude and the exact locations where the change will be largest (IPCC 2018).  

With the decrease of the summer sea-ice cover in the CAO, the only large permanently 

ice-covered ecosystem on Earth is vanishing. The CAO is becoming a more dynamic 

ecosystem with global warming, as the marginal ice zone moves further north in summer 

and south again in winter. The extent of both the minimum summer and winter sea ice 

cover has consistently been breaking negative records during the past decades: the 

minimum summer Arctic sea ice extent has decreased with an estimated loss rate of ~1 

million km2 (~13.2%) per decade between 1979 and 2017 (IPCC 2013, Barnhart et al. 

2015, Ding et al. 2017). Simultaneously, the sea ice is also thinning (Laxon et al. 2013), 

with an estimated loss rate of ~3,100 km3 (~13.5%) per decade over the period 1979 to 

2017. Climate models for the Arctic region predict a further decline of the summer sea-

ice cover to below 1 million km2 within the coming 30 years, depending on which political 

decisions are made and implemented at a global scale (Duarte et al. 2012, Screen & 

Williamson 2017). 

 

1.4. Fishable areas in the High Seas of the Arctic Ocean become accessible 

Approximately 20 % of the High Seas of the Arctic Ocean consists of shallow waters of 

2,000 m depth or less, while 80 % consists of deep basins (Fig. 1). The CAO is a fairly 

uniform ultra-oligotrophic ecosystem, i.e. with very low productivity due to low nutrient 

levels. Pelagic fishing would be possible in the whole area if the sea ice cover would 

disappear, and even bottom trawling would be possible in the larger shallow areas such 

as the Lomonosov, Alpha and Mendeleev Ridges. The Arctic coastal seas, except for parts 

of the Beaufort Sea, are situated on the continental shelves and contain most of the 

continental slope areas. They are influenced by land-based activities and generally 

nutrient-rich. 
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Figure 1.2. Changes in air temperature over time, showing that the Arctic region is warming faster 
than the rest of the globe [Nature Climate Change 7:230 (2017) and 
https://data.giss.nasa.gov/gistemp]. 

The Chukchi Plateau and the more coastal part of the Mendeleev Ridge are excluded from 

the CAO LME, but are still part of the High Seas. These are also the two shallow areas of 

the High Seas that already today are ice-free for several weeks in summer (Figure 1.3). 

The North-Pole area is predicted to become fully ice-free in summer during the coming 

decades, while the sea ice North of Greenland and Ellesmere Island (Canada) is expected 

to stay permanently ice-covered for the longest time (Screen & Williamson 2017). This 

means that, within the Arctic High Seas, productive areas that may be amenable for 

trawling are already accessible, and may soon extend into the CAO, with potential 

grounds for pelagic fishing along the continental slopes and within the central basin 

opening up during summer (Christiansen et al. 2014, Christiansen 2017). Today, the 

presence and future potential of commercially interesting fish stocks in these areas is 

unknown. Taking into account the water currents in the CAO and its distance from land, 

it is not expected that the CAO will become richer in nutrients with global warming 

(Tremblay et al. 2015). However, it is expected that even if these potentially “fishable” 

regions would become accessible, low levels of primary and secondary productivity would 

probably not be sufficient to support potential commercially relevant fish stocks.  

 

1.5. The fish stocks in the CAO are unknown 

The Arctic marine fish fauna is comprised of about 250 species, of which the majority are 

shelf-associated (Christiansen & Reist 2013). In shallow waters, monitoring activities 

with strongly varying efforts in space and time have generated an overall moderate to 

good knowledge of the fish stocks on the Arctic shelves (Fossheim et al. 2015, 

Mecklenburg & Steinke 2015, Antonov et al. 2017, Chernova 2018). Fish data from the 

nutrient-rich Arctic shelf seas cannot however be extrapolated to the oligotrophic (still) 

permanently sea ice-covered deep basins of the CAO and remote shallower areas, such 

as the central Lomonosov Ridge. This is due to the assumption that the carrying capacity 

of the oligotrophic CAO to support fish stocks is very limited (Tremblay et al. 2015), and 

that most species are not adapted to the deep-sea habitat.  

Records of fish observations have so far been sporadic and from spatially isolated study 

areas, mostly using non-quantitative sampling gear from drifting sea-ice stations 

(Andriyashev 1957, Andriyashev et al. 1980, Tsinovsky 1980, 1981). Icebreakers with 

echosounders or specialized trawls have only very recently been used to detect fish in 
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Figure 1.3. Maps of the Arctic region showing the High Seas (red line) with the minimum ice cover 
in summer 2012 (white area in the left map) and the shallower parts of the High Seas (yellow area 
in the right map) that may be more “fishable” than the deep basins. L = Lomonosov Ridge, A = 

Alpha Ridge, M = Mendeleev Ridge, C = Chukchi Plateau. Left: PEW map based on sea ice data 
from the University of Bremen SSMIS Sea Ice Data (www.iup.uni-bremen.de:8084/ssmis). Right: 
PEW map based on fishable depths derived from IBCAO v3 bathymetry 
(www.ngdc.noaa.gov/mgg/bathymetry/arctic). 

 

the CAO (David et al. 2016, Snoeijs-Leijonmalm et al., unpublished). Hence, there is 

evidence of only 12 fish species occurring in the CAO (FiSCAO 2017). More fishes could 

potentially live there based on their known habitat, behaviour and physiological 

demands, but have not been documented in the CAO so far. The only two species with 

historically consistent records indicating a widespread distribution in the CAO are 

Boreogadus saida and Arctogadus glacialis that that live associated with the underside of 

the sea ice (Andriyashev 1957, Andriyashev et al. 1980, Tsinovsky 1980, 1981, Melnikov 

& Chernova 2013, David et al. 2016). On the abyssal seafloor and in the slopes of the 

central ridge system, there is potential for benthic fishes to occur, such as snailfishes 

Liparis spp. and eelpouts Lycodes spp. (see Chapter 3). Furthermore, lanternfishes 

(Myctophidae) can be expected to dwell in the mesopelagic habitat based on their 

distribution ranges and the connectivity of the mesopelagic layer along the Atlantic 

gateway (Mecklenburg et al. 2018).  

Reliable data on fish stocks are generally scarce in the Arctic Ocean. A recent inventory 

(CAFF 2017) reported sporadic or absent monitoring of fish communities in six out of 

eight sectors of the Arctic Ocean. Monitoring is sporadic or absent in the Arctic Basin 

(CAO), the Kara-Laptev Sector, the Beaufort sector, the Hudson Complex Sector, the 

Davis-Baffin Sector, and the Canadian Arctic Archipelago sector. In contrast, the Atlantic 

Arctic (including the Barents Sea) and Pacific Arctic (including the Bering Sea) are 

covered by monitoring (Figure 1.4). In the CAO, there have been no systematic, 

quantitative surveys of fishes. Hence, there is no sound information about the 

distribution ranges, migration patterns and population sizes of any fish species living in 

the CAO. Therefore, there is currently no scientific basis for a sustainable management 

system in the CAO and the bordering shallow waters of the Arctic High Seas (FiSCAO 

2018). 

 

 



 Review of the research knowledge and gaps on fish populations, fisheries and linked 

ecosystems in the Central Arctic Ocean (CAO) 

 - 10 - 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.4. Map of contemporary marine fish data sources. Green squares indicate data from 

benthic trawl monitoring efforts, blue squares indicate data from benthic trawl surveys, while red 

triangles indicate data from pelagic trawl monitoring efforts. Figure from Hedges et al. in CAFF 
(2017). 

The CAFF (2017) report presented the following conclusions with respect to (changes in) 

the fish populations of the Arctic Ocean and adjacent areas within the CAFF area (Figure 

1.4): 

• Pelagic and benthic fish species are important in Arctic marine ecosystems because 

they transfer energy to predators such as seabirds, marine mammals, as well as 

people.  

•  Northward range expansions are underway and pose unknown consequences for Arctic 

species and their interactions such as predation and competition.  

•  Fishes are affected by environmental conditions such as temperature, sea ice and 

salinity, and are constrained by prey availability and predator pressure, which can be 

influenced by climate change.  

•  The ecologically important polar cod declined in the Barents Sea from 2004 to 2015, 

potentially because of predation from Atlantic cod, a temperate-boreal species. A 2016 

survey showed a notable increase in abundance, driven by an unusually high 

abundance of one-year-old fish.  

•  Indices and monitoring programs based on harvested species or that rely on fishery-

related data are inherently affected by changes in stock size and exploitation rate, 

making them imperfect sources of information.  

•  Northward expanding capelin is less lipid-rich and has led to changes in seabird diet in 

northern Hudson Bay and may affect marine mammals negatively.  

•  Greenland halibut have undergone declines and subsequent recoveries over the last 

two decades in the northeast Atlantic.  
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1.6. Possible future fisheries in the CAO 

Global models project an increased catch potential of potential future fisheries in the 

Arctic, including the CAO (Cheung et al. 2016). It has even been predicted that 

biodiversity of potentially exploited fish and invertebrates will increase in the CAO due to 

temperature-driven northwards movement of species as well as increased biological 

production (Jones & Cheung 2015). It is difficult, however, to evaluate the performance 

of these models for the CAO due to shortage of ecosystem and fisheries data.  

Most Arctic fishes are not directly associated with the sea ice, but constitute an integral 

part of the seafloor biota. Along the shelves and slopes of the Arctic Ocean, Arctic 

demersal fishes may temporarily benefit from improved feeding conditions but may also 

be threatened by new predators, such as invading boreal fishes and mammals. Increased 

human activity through emerging industrial enterprises on the Arctic shelves will act as 

an additional stressor. Boreogadus, on the other hand, an abundant and prominent 

member of the ice-associated biota, uses sea ice as spawning substrate, shelter and 

feeding ground. Thus, loss of sea ice has severe and explicit costs for this focal species 

with profound ecological consequences (Christiansen 2017) (see Chapter 4). 

Due to ocean warming and loss of Arctic sea ice, harvested marine fishes of boreal origin 

(and their fisheries) may move poleward into yet unexploited parts of the Arctic seas 

(Christiansen et al. 2014). Local fish stocks on the Arctic shelves are subject to 

commercial fisheries, e.g. in the Barents Sea (Eide et al. 2013) and Kara Sea (Antonov et 

al. 2017). They are also affected by changes in composition by northward movements of 

boreal fishes, as global warming drives changes in oceanographic conditions in the Arctic 

Ocean and the adjacent continental slopes (Fossheim et al. 2015; see Chapter 6). This 

may result in favourable conditions for increased biological production in waters at the 

northern continental shelves. However, overall production in the CAO will continue to be 

limited by the low amount of light and vertical stratification that is likely to become more 

marked with global warming (i.e. warming of the upper layer). Overall, this will reduce 

nutrient circulation.  

The probability of fish stocks to establish themselves in the CAO depends not only on 

food availability, but also on the potential to provide habitat and to allow successful 

reproduction and recruitment of juveniles. Considering these aspects, Hollowed et al. 

(2013) evaluated 13 species of commercially harvested finfish and shellfish to have a 

moderate to high potential of range expansion into the Arctic Ocean. A high potential for 

expansion or range shift beyond the shelf edge into the CAO, however, appears to apply 

only for Sebastes mentella (beaked redfish), Reinhardtius hippoglossoides (Greenland 

halibut) and the pan-Arctic Boreogadus saida (Christiansen 2017, Haug et al. 2017).  

 

1.7. Future management of the CAO 

Increasing economic activity in the CAO is in the interest of multiple stakeholders. Hence, 

in addition to environmental change driven by global warming, the CAO fish stocks are 

potentially subject to other stressors including oil and gas exploitation, mineral 

extraction, shipping and tourism. Consequently, maintaining a healthy CAO ecosystem 

that could possibly support fisheries requires the combined management of multiple 

economic sectors. A future coherent international management regime for the CAO is not 

entirely obvious as the area is subject of geostrategic, political and economic pressures. 

The Agreement, including its scientific mapping and monitoring programs of potential fish 

stocks in the CAO, is an important first step for building an international management 

regime. 
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Chapter 2. The CAO and adjacent large marine ecosystems (LMEs) 
Pauline Snoeijs-Leijonmalm (SU) 

 

2.1. Chapter summary 

The CAO is not a closed system. Its borders are defined as the continental slopes that 

pass over to eight large marine ecosystems (LMEs) situated on the continental shelves: 

the Barents Sea, Kara Sea, Laptev Sea, East Siberian Sea, Chukchi Sea, Beaufort Sea, 

Canadian Arctic Archipelago (or Northern Canadian Archipelago) and the Greenland Sea. 

To be able to model and assess the fish stocks in the CAO it is necessary to have data on 

connectivity with the fish stocks in the surrounding shelf seas (e.g. spawning areas, 

migration). From a literature search, it was concluded that the CAO is heavily under-

investigated with respect to fish but also that the Agreement has raised the scientific 

interest in possible future fisheries and fisheries management in the area. The fish stocks 

of the Barents Sea are best known and adequately monitored, followed by those of the 

Beaufort and Chukchi Seas. Little has been published in the international literature about 

the fish stocks in the Russian Kara, Laptev and East Siberian Seas: knowledge probably 

exists but is not internationally accessible. The area north of the Canadian Arctic 

Archipelago and Greenland is the least accessible area of the Arctic Ocean – with the 

toughest sea-ice conditions – and fish-stock data for this area do not exist. 

 

2.2. Background 

The Arctic Ocean is an important part of the global climate system as a constituent of the 

meridional overturning and global “conveyor belt” circulation (Böhm et al. 2015, Buckley 

& Marshall 2016). Atlantic water – partly originating from the Gulf Stream – flows into 

the Arctic Ocean where it is cooled and modified and returned as cold over-flow water 

into the deep North Atlantic Ocean. The oceanographic processes in the North Atlantic 

and Arctic Oceans have received much attention in the context of climate variability and 

global climate change (e.g. Aagaard & Carmack 1994, Carmack & McLaughlin 2011, 

Mauritzen et al. 2011). The Arctic Ocean consists of four vertical layers of waters or 

water masses (Coachman & Barnes 1961, Rudels et al. 1991, 2004): 

1. A surface layer about 50 m thick of low salinity water that is seasonally modified by 

sea-ice formation and melting (polar mixed layer). 

2. A gradient layer (halocline) with strong increase in salinity and density between the 

surface layer and the next layer of Atlantic water below, located typically from about 

50 to about 200 m depth (Figure 2.1).  

3. An intermediate thick layer of relatively warm (temperature above 0 oC) Atlantic 

water below the halocline down to about 1,000 m. 

4. Deep water of relatively uniform character (temperature between -0.5 and -1.0 oC 

and salinity around 34.9) filling the deep basins below the Atlantic layer. 

The water circulation in the Arctic Ocean is driven by Atlantic water entering through 

Fram Strait and the Barents Sea, and Pacific water entering through the Bering Strait and 

the Chukchi Sea (Coachman & Barnes 1961, 1963, Aagaard et al. 1985, Aagaard 1989). 

The ratio of these two inflowing water masses is roughly 5:1. The Pacific water has lower 

salinity (and density) than the Atlantic water (salinity around 31-33 compared to nearly 

35) and is found mainly in the upper and mid halocline layer in the Canada Basin. The 

Atlantic water flows into the Arctic Ocean with two main branches (Fram Strait and 

Barents Sea) and circulates counter-clockwise as a set of boundary currents around the 

slopes of the Arctic Ocean basins (Aagaard 1989, Rudels et al. 1999, 2004, Rudels & 

Friedrich 2000).  
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Figure 2.1. Examples of vertical profiles 
of oceanographic variables in the CAO. 
Measurements were made between 15 
August and 15 September during the 

Arctic Ocean 2016 expedition with RV 
Oden in the upper 1000 m of the water 
column. (A) Water temperature. (B) 
Salinity. (C) Oxygen concentration. (D) 
Density. Figure: Snoeijs-Leijonmalm et 
al. (unpublished). 

 

 

 

 

 

Figure 2.2. The Large Marine Ecosystems (LMEs) of the Arctic region as defined by the Arctic 
Council (PAME 2013). 
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The Arctic Council Working Group PAME has – based on ecological boundaries – defined 

the LMEs of the Arctic region as follows (PAME 2013; Figure 2.2): 

The CAO is the largest of the Arctic LMEs with an area of 3.3 million km2. It comprises 

essentially the deep basins of the Arctic Ocean with the Lomonosov Ridge separating the 

Eurasian and Amerasian basins. The key features of the CAO are the deep basins and the 

drifting pack ice that covers the whole area during both winter and summer, except for 

some of the more recent summers with especially low ice cover (Figure 1.3). The sea 

ice constitutes the habitat for cold-adapted microbial communities and a partly endemic 

fauna of ice amphipods and other invertebrates. Polar bears of several subpopulations 

move with the ice to live in the peripheral portions of the pack ice during the late 

summer season. This habitat is also used by two of the high arctic ice-associated gulls, 

Pagophila eburnea (ivory gull) and Rhodostethia rosea (Ross’s gull). PAME (2013) 

defined the CAO LME essentially as what is left when the Arctic shelf LMEs are defined. 

For the LMEs on the Eurasian side – the Barents Sea, Kara Sea, Laptev Sea and East 

Siberian Sea – their outer boundaries include the upper slope with the Atlantic water 

layer and the slope currents flowing east along the continental margin. The boundaries 

have been approximated as straight-line segments following roughly the 1,000 m 

isobath. The Barents Sea includes the Yermak Plateau and also the Sofia Deep east of it. 

The rationale for these outer boundaries is that the slope current of Atlantic water plays 

important roles for the oceanography and ecology of the adjacent shelves, e.g. by 

transporting the copepod Calanus hyperboreus to deeper parts of the shelves. For the 

Chukchi Sea LME, the boundaries include the Chukchi Borderland with Northwind Ridge, 

the Chukchi Rise and the deep area in between. The northern boundary of the Beaufort 

Sea is along 76 oN, which approximates the average summer minimum sea-ice 

distribution during the recent decades. The northern boundary of the Canadian High 

Arctic-North Greenland LME follows the shelf edge, approximated roughly by the 200 m 

isobath.  

The Barents Sea LME is a shelf sea with an average depth of 230 m. Atlantic water 

flows with two main branches into the Arctic Ocean, one branch flowing across the 

Barents shelf and exiting via the northern Kara Sea, and the other flowing around the 

shelf plateau west and north of Svalbard. This flow pattern determines the oceanographic 

regimes with warmer boreal and ice-free conditions in the southwestern part of the 

Barents Sea and cold and ice-infested conditions in the northern and eastern parts. There 

are distinct differences in zooplankton composition and communities, with Calanus 

finmarchicus being a dominant copepod in the Atlantic water while Calanus glacialis is its 

counterpart in Arctic water. The Barents Sea hosts large fish populations, including 

Atlantic cod (Gadus morhua), haddock (Melanogrammus aeglefinus), Greenland halibut 

(Reinhardtius hippoglossoides), capelin (Mallotus villosus) and polar cod (Boreogadus 

saida). The capelin forms a strong ecological linkage between the southern and northern 

Barents Sea by migrating northward in summer to feed on the zooplankton in the colder 

northern waters. Seasonal migrations are also characteristic for most other fish 

populations. The Barents Sea LME contains a large population of harp seals that whelp at 

the entrance to the White Sea. The LME is also home to the Barents Sea subpopulation of 

polar bears and two populations of walrus, the Svalbard-Franz Josef Land population and 

the Kara Sea-southern Barents Sea-Novaya Zemlya population. Several subpopulations 

of belugas (white whales) are found in the White Sea and the eastern and northern parts 

of the Barents Sea. 

The Kara Sea LME is a shallow shelf sea (average depth 131 m). At its low-lying coasts, 

the estuaries of two of the major Arctic rivers, the Ob and the Yenisei, are found. These 

rivers discharge large volumes of freshwater that strongly influences the hydrography of 

the Kara Sea, resulting in extensive areas of brackish water in the summer season. The 

Kara Sea LME is ice-covered in winter but is generally devoid of ice in summer except for 

the northernmost areas. It is home to the Kara Sea subpopulation of polar bears and it 

contains important feeding areas for summer aggregations of belugas. The northern Kara 

Sea is the breeding area for the largest part of the global population of ivory gulls. 
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The Laptev Sea LME is situated in the central part of the Russian Arctic and has an 

average depth of 578 m. The northern boundary of the Laptev Sea follows along the 

outer slope to the Arctic Ocean basins. This area constitutes the eastern margin of the 

Eurasian Basins (Nansen and Amundsen) and steers the flow of Atlantic water on its way 

into the Arctic Ocean. A prominent feature of the Laptev Sea is the “Great Siberian 

Polynya” which is a system of leads and polynyas (unfrozen sea within the ice pack kept 

open by strong currents and/or winds), stretching from off the Taymyr Peninsula in the 

west to off the New Siberian Islands in the east. This polynya system provides important 

spring staging and feeding habitats for migratory birds, and probably also for the Laptev 

walrus population. The LME is also home to the Laptev Sea subpopulation of polar bears. 

There is possibly a migratory population of Boreogadus in the western part of the LME 

that serves as a summer feeding area for belugas of the Karskaya population wintering in 

the Barents Sea (Boltunov & Belikov 2002). There are several river deltas and estuaries 

along the southern mainland, with the Lena delta as the most prominent feature. These 

estuaries and deltas constitute important breeding, feeding and staging habitats for 

migratory birds. 

The Northern Bering-Chukchi Sea LME is a shallow shelf sea with depths of 50-70 m 

or less extending >1,000 km from the shelf edge. The area is characterized by a 

persistent northward flow of water driven by higher water level in the Bering Sea than in 

the Arctic Ocean. The Pacific water is nutrient-rich – about three times that of North 

Atlantic water – and the combination of northward flow and shallow topography drives 

very high primary production rates in the Bering Strait region of up to 500 g C m-2 per 

year or more. This makes the region a global hot spot in terms of production, comparable 

to upwelling systems. The area is ice-covered in winter but ice-free in summer except for 

the northern part of the Chukchi Sea in cold years. Boreogadus is an important fish 

species here (Lowry & Frost 1981, De Robertis et al. 2017). 

The Beaufort Sea LME has an average depth of 124 m and consists of three main 

components: the southern part of the deep Canada Basin, the shelf along northern 

Alaska and northwestern Canada, and the southwestern part of the Canadian Arctic 

Archipelago. Prominent features are the Mackenzie River delta and estuary and the 

Bathurst Polynya in the Amundsen Gulf. Primary production is relatively high due to 

influence of nutrient-rich Pacific water, and zooplankton residing in the deeper offshore 

areas provides important couplings to higher trophic levels. There is probably a large 

migratory population of Boreogadus in the eastern Beaufort Sea, which is a major 

summer feeding area for large numbers of bowheads and belugas from migratory 

populations wintering in the Bering Sea (Braham et al. 1984).  

The Canadian High Arctic-North Greenland Sea is strongly influenced by heavy 

multi-year pack ice that is transported into the Sverdrup Basin from the Central Arctic 

Ocean through the openings between the northern Queen Elisabeth Islands (east of 

Ellesmere Island). The Nares Strait between Ellesmere Island and Greenland is one of the 

connections between the Arctic Ocean and Baffin Bay. The production in the LME is 

generally low due to the heavy ice conditions. Two polar bear subpopulations live in the 

area, one on each side of Ellesmere Island: the Norwegian Bay and Kane Basin 

subpopulations. Narwhals that summer in Smith Sound move into Kane Basin and 

possibly further north in the Nares Strait. Otherwise, the whales and seals of large stocks 

of the Baffin Bay region do not move into this ice-choked area. The coasts of northern 

Greenland along with Ellesmere and Axel Heiberg islands are breeding grounds for Branta 

bernicla (brent goose) and several species of high Arctic shorebirds, such as Calidris 

canutus (red knot), Calidris alba (sanderling), Calidris maritima (purple sandpiper), 

Arenaria interpres (ruddy turnstone) and Charadrius hiaticula (common ringed plover). 

These birds belong to populations that fly east to winter in western Europe or West 

Africa. 

The Greenland Sea-East Greenland Sea consists of three distinct portions, the 

Greenland Sea, the western Denmark Strait, and the Southeast Greenland Shelf. The 

cold East Greenland Current running from the Arctic Ocean through the Fram Strait, is a 

prominent oceanographic feature, as is the gyre circulation within the Greenland Sea. 
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Most of the area is covered with sea ice in winter. Boreogadus is an important fish 

species, and the LME constitutes important breeding and feeding habitat for populations 

of harp and hooded seals. It is also the home of the East Greenland subpopulation of 

polar bears. 

Physiographic provinces in the Central Arctic Ocean (CAO) and the High Seas are very 

similar because of the large overlap between the two areas. Both areas consist mainly of 

abyssal plains and ridges, but the CAO includes more rises while the High Seas includes a 

small area of continental shelf (Jakobsson et al. 2003). In addition to abyssal plains and 

ridges both areas contain submarine highlands, continental rises, continental slopes, and 

continental shelves, the categories perched abyssal plains, perched continental rises and 

isolated basins. Perched means that the province is bathymetrically elevated in relation 

to nearby provinces and the isolated basin was used to describe a smaller 

bathymetrically enclosed basin. 

 

2.3. Summary of literature searches 

To roughly summarize the existing scientific knowledge about fish and fisheries in the 

CAO and adjacent ecosystems, a comparison was made of the scientific publications 

containing the word “fish” or “fisheries” for all oceans, the Arctic Ocean (the CAO and all 

the shelf seas) and the CAO. These searches are full text searches and indicate any 

connection of the paper with fish – even if the connection is minimal, including when the 

words “fish” and “fisheries” occur in reference lists or author addresses. 

This comparison shows that 15,081 (6.0 %) of the 249,587 scientific publications on the 

global ocean are connected to fish and fisheries (Table 2.1). Of the 15,081 scientific 

publications connected to fish and fisheries globally, 870 (5.8 %) mention the Barents 

Sea, which shows that this is a very well-studied area with respect to fish and fisheries. 

Another relatively well-studied area of the Arctic Ocean is the Beaufort Sea with 166 (1.1 

%) papers, while the others score <0.5 %. Comparing 7,267 papers on fisheries with 

15,081 papers on fish, ca. 50 % of the publications connected to fish in the global ocean 

deal with fisheries. For the Arctic Ocean this is ca. 30 % (indicating relatively more basic 

research on fish) and in the Central Arctic Ocean ca. 80 % (nearly all 18 publications are 

about the Agreement). Although a few publications were missed in this literature search 

(e.g. Melnikov & Chernova 2013), this shows that the CAO is heavily under-investigated 

with respect to fish but also that the Agreement has raised the scientific interest in 

possible future fisheries and fisheries management in the area without existing basic 

knowledge about the fish in the CAO ecosystem. 

 

2.4. Summary of knowledge 

A search in the Web of Science does not reflect everything that is known about fish and 

fisheries in the CAO and adjacent areas because data can be hidden in the “grey 

literature” that is not internationally accessible or as unpublished data in (national) 

databases (see Chapters 3 and 4). However, this analysis provides a good impression 

for which of these areas the scientific basis would be sufficient for evaluating the fish 

stocks from biological, management and social-ecological system (SES) perspectives. 

We know very little about the CAO. After scrutinizing the 21 publications found on the 

CAO and the High Seas (red areas in Table 2.1), 16 publications were relevant for fish, 

fisheries or environmental protection (Table 2.2), but only three present original data on 

fish in the CAO or the High Seas. David et al. (2016) report on the sympagic (ice-

associated) distribution of Boreogadus in the central Arctic Ocean and their association 

with sea-ice habitat properties. Kohlbach et al. (2017) reports a strong linkage of 

Boreogadus to sea ice algae-produced carbon evidenced by stomach content, fatty acid 

and stable isotope analyses. Stern & Macdonald (2005) reported on total and methyl 

mercury in zooplankton and fish from the Beaufort and Chukchi seas, including the 
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Chukchi Plateau (High Seas). The latter publication, although dealing with ecotoxicology, 

indirectly provides some distributional data on Boreogadus in the area. 

The fish stocks of the Barents Sea are best known and adequately monitored, followed by 

those of the Beaufort and Chukchi Seas. Not much has been published in the 

international literature about the fish stocks in the Russian Kara, Laptev and East 

Siberian Seas: knowledge probably exists but is not internationally accessible. The area 

north of the Canadian Arctic Archipelago and Greenland is the least accessible area of the 

Arctic Ocean – with the toughest ice conditions – and fish-stock data for this area do not 

exist.  

 

 

Table 2.1. The number of scientific publications found in the Web of Science Core Collection for 
the time span 1945-2019 with “Ocean”, “Arctic Ocean”, the Arctic Ocean’s LMEs as well as relevant 
shallow areas as search criteria (All) and “fish” or “fisheries” as additional search criteria. This 

literature search was made on 2 July 2019. * = Sizes of the Arctic shelf seas according to PAME 
(2013). Note that “fisheries” also contains “fish”, e.g. with the search criterion “Ocean” the search 
motor found 6.0 % papers with the word “fish”, which includes the 2.9 % papers on fisheries, as 
well as papers with other words including “fish”. The publications on the CAO and the High Seas 
are indicated in red. 

Search criteria 
Size      

(103 km2)* 
Average 

depth (m) 
All Fish 

Fish 
(%) 

Fisheries 
Fisheries 

(%) 

“Ocean” 361,132 3,688 249,587 15,081 6.0 7,267 2.9 

“Arctic Ocean” 14,056 1,038 7,976 225 2.8 66 0.8 

“Central Arctic Ocean” 3,281  623 18 2.9 14  2.2 

“Lomonosov Ridge”   357 2  0.8 0  0.0 

“Alpha Ridge”   131 0 0.0 0  0.0 

“Mendeleev Ridge”   108 0  0.0 0  0.0 

“Chukchi Plateau”   47 1 2.1 0 0.0 

“Barents Sea” 2,010 230 5,476 870 15.9 397 7.2 

“Kara Sea” 1,000 131 1,060 18 1.7 3 0.3 

“Laptev Sea” 920 578 933 10 1.1 0 0.0 

“East Siberian Sea” 640 58 250 6 2.4 0 0.0 

“Chukchi Sea” 620 80 2,012 71 3.5 19 0.9 

“Beaufort Sea” 1,110 124 2,530 166 6.6 32 1.3 

“Canadian Arctic 
Archipelago” 

600  679 9 1.3 0 0.0 

“Greenland Sea” 1,200 1,444  1,692 42 2.5 7 0.4 
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Table 2.2. The 21 scientific publications on the Central Arctic Ocean related to fish or fisheries 

found in the Web of Science Core Collection for the time span 1945-2019 cf. Table 2.1. Five of the 
papers were not relevant for fish, fisheries or environmental protection in the CAO. The three 

publications in red are the only papers that present original data on (sympagic) fish in the CAO 
(David et al. 2016, Kohlbach et al. 2017) or the Chukchi Plateau in the High Seas (Stern & 
Macdonald 2005). 

Rele-

vant 
Year Scientific paper Citations 

Yes 2018 Niiranen S, et al. (2018) Global connectivity and cross-scale interactions create uncertainty for 

Blue Growth of Arctic fisheries. Marine Policy 87:321–330 

3 

Yes 2018 Zou L, Huntington HP (2018) Implications of the Convention on the Conservation and 

Management of Pollock Resources in the Central Bering Sea for the management of fisheries in 

the Central Arctic Ocean. Marine Policy 88:132–138 

2 

Yes 2018 Manero SA (2018) The Arctic Environmental Protection and the Agenda 2030. Actualidad 

Jurídica Ambiental, ISSN-e 1989-5666, No. 77, pp. 4-34 

0 

Yes 2018 Bertelsen RG (2018) The International Political Systemic Context of Arctic Marine Resource 

Governance. Arctic Marine Resource Governance and Development 3:17 [abstract] 

0 

Yes 2018 Rayfuse R (2018) Regulating fisheries in the Central Arctic Ocean: Much ado about nothing? 

In: Vestergaard N, et al. (Eds) Arctic Marine Resource Governance and Development, Springer 

Nature. pp. 35–51 

0 

Yes 2018 Papastavridis E (2018) Fisheries Enforcement on the High Seas of the Arctic Ocean: Gaps, 

Solutions and the Potential Contribution of the European Union and Its Member States. 

International Journal of Marine and Coastal Law 33:324–360 
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2.5. Critical gap analysis 

Table 2.3. Critical gap analysis for variables relevant for ecosystem analyses and climate change 

impacts in the CAO. Estimate of severity of the knowledge gap: 0 = no knowledge, 1 = serious lack 
of knowledge, 2 = insufficient knowledge, 3 = sufficient knowledge available for the purpose 
indicated in column 2. 

Variable Why the variable is necessary 
to evaluate possibilities for 
future fisheries 

Estimate of 
severity of the 
knowledge gap 

What data needs to be collected to 
decrease the gap? 

Oceanography of the CAO Environmental conditions for 
modelling and assessment of 
fish stocks in the CAO 

2-3 The oceanography of the Arctic Ocean is 
relatively well-known but it is necessary 
to measure temperature, salinity, 
oxygen, etc. simultaneously with a 

scientific survey of the food web 

Bottom topography of the 
CAO 

Environmental conditions for 
modelling and assessment of 
fish stocks in the CAO 

2-3 An International Bathymetric Chart of 
the Arctic Ocean exists (Jakobsson et 
al. 2012) and is routinely being refined 
by seagoing expeditions 

Ice cover dynamics Environmental conditions for 
modelling and assessment of 
fish stocks in the CAO 

3 This is very well studied in a longer time 
perspective, e.g. NASA 

Winter conditions in the CAO Seasonality of environmental 
and biotic factors for 
modelling and assessment of 
fish stocks in the CAO 

1 Winter conditions are generally less 
known than summer conditions in all 
fields of science 

Effects of disappearance of 
sea-ice on the sympagic, 
marine pelagic and benthic 
food webs in the CAO 

Food-web interactions in a 
changing environment for 
modelling and assessment of 
fish stocks in the CAO 

1 Comparative studies of the diversity 
and functioning of the food webs 
between ice-covered and non-ice-
covered waters in the CAO 

Fish stocks in the Arctic Ocean LMEs 

Fish stocks in the CAO The minimum basic data for 
modelling and assessment of 
fish stocks in the CAO 

1 Acoustics in combination with 
oceanography and scientific surveys of 
the pelagic, sympagic and benthic food 
webs  

Fish stocks in the Barents 
Sea 

Connectivity with the fish 
stocks in the CAO for 
modelling and assessment of 
fish stocks in the CAO 

3 The fish stocks are very well known and 
monitored 

Fish stocks in the Bering, 
Beaufort and Chukchi Seas 
Sea 

Connectivity with the fish 
stocks in the CAO for 
modelling and assessment of 
fish stocks in the CAO 

2 The fish stocks are known and 
monitored except for the outer areas of 
the deep ice-covered Beaufort Sea and 
the Chukchi Plateau 

Fish stocks in the Kara, 
Laptev and East Siberian 
Seas 

Connectivity with the fish 
stocks in the CAO for 
modelling and assessment of 
fish stocks in the CAO 

1 The fish stocks are known and 
monitored but the information is not 
internationally accessible –cooperation 
with Russian scientists should be 
stimulated through the Agreement 

Fish stocks north of the 
Canadian Arctic Archipelago 
and Greenland 

Connectivity with the fish 
stocks in the CAO for 
modelling and assessment of 
fish stocks in the CAO 

1 The fish stocks are not known and not 
monitored because the area is basically 
inaccessible (extremely tough ice 
conditions) 
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Chapter 3. Pelagic and benthic fish: species, population dynamics, 
distribution  
Pauline Snoeijs-Leijonmalm (SU), Filip Volckaert (KU Leuven) 
 

3.1. Chapter summary 

Very little is known about the pelagic and benthic fish in the CAO. The cryopelagic 

gadoids Boreogadus saida and Arctogadus glacialis, both Arctic endemics, are the two 

species we would expect to find in significant abundances in the pelagic zone of the CAO. 

Boreogadus is a key species in the Arctic marine shelf ecosystems, serving as important 

trophic link between plankton and apex predators, and has previously been harvested for 

fish oil and fish meal. It is often the main food source for many Arctic marine mammals, 

including beluga whales and ringed seals. Arctogadus is a less abundant species. It is 

necessary to combine hydroacoustic studies with scientific surveys of the pelagic food 

web in this mesopelagic scattering layer. A highly commercial bentho-pelagic species, the 

Greenland halibut Reinhardtius hippoglossoides, has been observed in the CAO only once 

at 75 oN (1,665 km south of the North Pole). The other nine species recorded in the CAO 

are nine benthic species without any known commercial value. 

 

3.2. Background 

From an assessment of published data and data in fisheries databases compiled by the 

FiSCAO Expert Group in its fourth report, and the gap analysis in Chapter 2 of this 

report, it is clear that very little data exists on fish in the CAO and the Arctic High Seas 

(FiSCAO 2017). The FiSCAO Expert Group presented an inventory of all fish species 

recorded until 2016 in all Arctic LMEs (CAO and shelf seas). In addition to Boreogadus 

and Arctogadus they found that nine fish species of no commercial interest had been 

detected in the CAO (Figure 3.1). The 12th and last species recorded from the CAO is 

the Greenland halibut Reinhardtius hippoglossoides, which is a highly commercial 

bentho-pelagic species, but it was found only once in the CAO at 75 oN (1,665 km south 

of the North Pole). 

Based on the few observations in the CAO, Boreogadus and Arctogadus (Figure 3.1) are 

the two species we expect to find in significant abundances in the pelagic zone of the 

High Seas of the CAO. However, they may occur mixed with other fishes. For example, 

Gjøsæter et al. (2017) reported Boreogadus to occur together with Arctozenus risso 

(spotted barracudina) and Sebastes mentella (beaked redfish), as well as the 

lanternfishes Benthosema glaciale (glacier lanternfish) and Lampanyctus macdonaldi 

(rakery beaconlamp) from an acoustic scattering layer in the Svalbard area just outside 

the CAO. Early studies from Soviet drifting ice stations reported Boreogadus, Arctogadus 

and the snail fishes Paraliparis bathybius (black seasnail) and Lycodes frigidus (glacial 

eelpout) from the CAO (Andriyashev et al. 1980). 

Boreogadus has been exploited in the Barents Sea for the production of fish oil and fish 

meal. The Soviet and Russian fishing fleets have fished this species since 1966, with 

peak catches (332,000 tonnes) in 1971. Norway only fished Boreogadus in 1969-1971, 

but to a much lesser extent (16,000 tonnes in 1971; Hop & Gjøsæter 2013). Arctogadus 

has not been commercially exploited, probably because no schools have been observed, 

but it could deliver the same products as Boreogadus (e.g. fish oil and fish meal). The 

two species are closely related cod fishes, but Arctogadus becomes older and larger than 

Boreogadus and stable isotope analyses place Arctogadus slightly higher up in the food 

web in the areas adjacent to the High Seas of the CAO (Christiansen et al. 2012). 

Juvenile Boreogadus are cold-adapted (Kunz et al. 2016), live closely associated with sea 

ice and significantly depend on ice-associated resources (Kohlbach et al. 2017; see 

Chapter 4). This makes them particularly vulnerable to ocean warming and sea ice 
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decline, along with other human-induced stressors, e.g. microplastic pollution (Kühn et 

al. 2018, Peeken et al. 2018). 

  

 

Figure 3.1. Fish species recorded in the CAO according to FiSCAO (2017). Boreogadus saida and 
Arctogadus glacialis are the two fish species recorded in the CAO that may be of commercial 
interest. Their distributions in the High Seas of the CAO are largely unknown. Besides Boreogadus 
and Arctogadus, nine benthic fish species of no commercial interest (www.fishbase.org) have been 
recorded in the CAO, but only one (gelatinous snailfish) north of 77 oN.  

 

3.3. Summary of literature searches 

A literature search focusing on Boreogadus and Arctogadus was carried out (Table 3.1). 

Scientific publications were identified in the Web of Science (WoS) with the geographic 

search criteria “Ocean”, “Arctic Ocean” and “Central Arctic Ocean”, as well as relevant 

geographic areas (Figure 1.1) and “fish”, “Boreogadus” or “Arctogadus” as additional 

search criteria. After checking the identified papers on the CAO and High Seas for 

overlapping papers and relevant contents, 17 papers on fish, eight on Boreogadus and 

one on Arctogadus remained. In addition, 17 relevant papers on Boreogadus and 12 on 

Arctogadus that were not identified by the WoS by the (full text) key words or absent 

from the WoS, were found by Google. After compensation for overlapping papers 

identified by “fish”, “Boreogadus” or “Arctogadus”, 40 papers were left. These 40 papers 

can be divided into four categories: 

 

1.   Papers presenting original data on sympagic fish distribution in the CAO 

(Andriyashev et al. 1957, Andriyashev et al. 1980, Tsinovsky 1980, 1981, Gradinger & 
Bluhm 2004, Melnikov & Chernova 2013, David et al. 2015, 2016, Kohlbach et al. 2017, 
Kühn et al. 2018). 

2.   Papers presenting original data on pelagic fish distribution at or close to the 

Chukchi Plateau in the High Seas (Walters 1961, Tsinovsky 1981, Bluhm et al. 2005, 
Stern & Macdonald 2005, Crawford et al. 2012, Mecklenburg et al. 2014, Vestfals et al. 
2019). 

3.   Review papers including data on pelagic fish distributions in the Arctic Ocean 
(Melnikov 1980, Aschan et al. 2009, Chernova 2011, Mecklenburg et al. 2011, Christiansen 
2012, Christiansen & Reist 2013, Hop & Gjøsæter 2013, Berge et al. 2015, Bluhm et al. 
2015, Mecklenburg & Steinke 2015, Mueter et al. 2016, Bouchard et al. 2017). 

4.   Papers on policy and management (Pan & Huntington 2016, Shephard et al. 2016, 
Edwards & Evans 2017, Haug et al. 2017, Norris & McKinley 2017, Van Pelt et al. 2017, 

Harris et al. 2018, Landriault 2018, Niiranen et al. 2018, Papastavridis 2018, Zou & 
Huntington HP 2018). 

 
  

http://www.fishbase.org/


 Review of the research knowledge and gaps on fish populations, fisheries and linked 

ecosystems in the Central Arctic Ocean (CAO) 

 - 22 - 

Table 3.1. The number of scientific publications found in the Web of Science Core Collection for 

the time span 1945-2019 with relevant geographical areas as search criteria (All) and “fish”, 
“Boreogadus” or “Arctogadus” as additional search criteria. This literature search was made on 2nd 

July 2019. Additional papers = papers and reports in our personal libraries that were not identified 
by the WoS by the key words or absent from the WoS. 

Search criteria  
 In the Web of Science data base (WoS) Additional papers 

All Fish Fish Boreogadus Boreogadus Arctogadus Arctogadus Boreogadus Arctogadus 

None 67,457,677 405,184  394  35  98 86 

“Ocean” 249,587 15,081  70  8    

   “Arctic Ocean” 7,976 223  39  7    

     “Central Arctic Ocean” 623 18 

18 

5 

9 

0 

1 17 12 

          “Amundsen Basin” 87 1 2 0 

          “Nansen Basin” 171 1 2 0 

          “Canada Basin” 735 10 8 1 

          “Gakkel Ridge” 228 1 0 0 

          “Lomonosov Ridge” 358 3 0 0 

          “Alpha Ridge” 131 0 0 0 

          “Mendeleev Ridge” 108 0 0 0 

          “Chukchi Plateau” 47 1 1 0 

          “Chukchi Borderland” 55 2 1 1 

          “Chukchi rise” 8 0 0 0 

          “Beaufort Gyre” 252 1 0 0 

“Arctic” and “High Seas” 39 13 1 0 

    “Barents Sea” 5,476 870  83  2    

    “Kara Sea” 1,060 18  3  0    

    “Laptev Sea” 933 10  7  1    

    “East Siberian Sea” 250 6  1  0    

    “Chukchi Sea” 2,012 71  35  1    

    “Beaufort Sea” 2,530 166  87  5    

    “Canadian Arctic   

     Archipelago” 
679 9  3  0    

    “Greenland Sea” 1,692 42  18  1    

 

3.4. Summary of knowledge 

Preliminary hydroacoustic observations suggest the occurrence of a deep scattering layer 

in the “warm” (0.4-1.2 oC) Atlantic water masses of the ice-covered CAO at 300-600 m 

(Snoeijs-Leijonmalm et al., unpublished). The acoustic backscatter energy is very low 

and could originate from low abundances of the small Arctic gadoid fishes Boreogadus 

and Arctogadus. However, physonect siphonophores (Class Hydrozoa, Phylum Cnidaria) 

may also contribute to the backscatter, thus sampling organisms from this layer is 

mandatory to be able to draw conclusions about fish abundance. 

Data from the Beaufort Sea shows Boreogadus to be vertically segregated by size in all 

months, with juveniles in the epipelagic (<100 m) layer and older Boreogadus in the 

Atlantic layer along the slopes of the Beaufort Sea at 200-500 m depth (Parker-Stetter et 

al. 2011, Benoit et al. 2014, Geoffroy et al. 2016). It has been hypothesized that early 

hatching (already in January) enables the juvenile fish to reach a minimum size and the 

capacity to avoid predation before they join their cannibalistic congeners in the 

mesopelagic Atlantic layer in the Arctic shelf seas (Bouchard & Fortier 2011). This 

strategy might be the same in the CAO with juveniles associated with sea ice (Gradinger 

& Bluhm 2004, Melnikov & Chernova 2013, David et al. 2016) and adults deeper down. 

Boreogadus is a key species in the Arctic marine shelf ecosystems, serving as an 

important trophic link between plankton and apex predators (Hop & Gjøsæter 2013, 

Christiansen & Reist 2013, Mueter et al. 2016, Chernova 2018). Boreogadus are often 

the main food source for many Arctic marine mammals, including beluga whales (Loseto 

et al. 2009, Hauser et al. 2015) and ringed seals (Crawford et al. 2015). Arctogadus is 

less abundant and it seems to be primarily associated with the Arctic fjords and shelves 

(Aschan et al. 2009). The two species are taxonomically distinguished by simple 

phenotypic features for adults (Christiansen 2012) and genetic markers for the larval 

stages (Madsen et al. 2009). 
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Early records of Boreogadus and Arctogadus in the CAO originate from the drifting ice 

station North Pole-16 (NP-16) during the winter period 1968–1969 (Andriyashev et al. 

1980). The species was found to occur in association with the sea ice cover and in the 

pelagic zone – but only down to a depth of 25 m – by fishing with lines and nets. 

Andriyashev et al. (1980) reports length measurements of ca. 200 fish specimens (176 

Boreogadus and 32 Arctogadus) and weight and age for 19 Arctogadus, but reports high 

abundances of up to 1,600 individuals observed on one day in the upper sub-ice water 

layer. Walters (1961) reported the occurrence of Arctogadus from the American drifting 

ice station “Station Charlie” in the High Seas near the Chukchi Plateau using bottom 

dredging and seismic blasts. Altogether, 35 specimens of 12-24 cm standard length were 

collected from two seismic blasts on 10 and 21 December 1959, and between 21 

December and 3 January 50-70 individuals were caught daily in this way. Arctogadus was 

not obtained in summer, and in winter only when Station Charlie was in the 

neighbourhood of the Chukchi rise, and it was concluded that the fish was probably not 

ice-associated but truly pelagic. Furthermore, it was suggested that schools of 

Arctogadus undertake a feeding migration in mid-winter across the shallow waters of the 

Chukchi Plateau. All investigated specimens had their stomachs full of small crustaceans 

and they had large fat deposits in their body cavities. Walters (1961) also reported two 

non-commercial benthic fish, the glacial eelpout Lycodes frigidus and the sea tadpole 

Careproctus reinhardti (Figure 3.1).  

The genetic diversity and connectivity of Arctic fish populations, regardless of being 

exploited or not, represents important information to understand biogeographical 

patterns, population structure and connectivity, and to support sustainable management. 

In addition to the information on Boreogadus and Arctogadus provided in Chapter 4, we 

performed a literature search focusing on the population genetics of the ten additional 

high sea fish species that have been reported to inhabit the CAO (FiSCAO 2017): the 

gelatinous seasnail Liparis fabricii, Adolf's eelpout Lycodes adolfi, longear eelpout 

Lycodes seminudus, Archer eelpout Lycodes saggittarius, Canadian eelpout Lycodes 

polaris, Atlantic hookear sculpin Artediellus atlanticus, Polar sculpin Cottunculus microps, 

sea tadpole Careproctus reinhardti, stout eelblenny Anisarchus medius (Figure 3.1) and 

the commercially exploited Greenland halibut Reinhardtius hippoglossoides. We found 

only few references, except for Greenland halibut. Mitochondrial DNA did not reveal any 

genetic structure across the geographical range of this species (Vis et al. 1997). These 

data would suggest that there is sufficient mixing of Greenland halibut among sites in the 

North Atlantic generally, to prevent the development or maintenance of genetically 

independent stocks. However, nine DNA microsatellites detected partially isolated 

populations in the North Atlantic Ocean, which was attributed to drift of eggs and larvae 

from the spawning grounds (Knutsen et al. 2007). In a more recent study (Westgaard et 

al. 2017), 96 single nucleotide polymorphic (SNP) markers detected weak but significant 

population structure separating a western Atlantic population and an eastern Atlantic 

population. Again, this was attributed to egg and larval drift and/or migratory behaviour 

among populations of Greenland halibut.  

In the absence of complementary biological information, biophysical modelling of 

dispersal is likely to be highly informative, as proven in fish (Barbut et al. 2019) and 

meroplankton (Le Goff et al. 2017). The warming of Arctic waters is driving a major shift 

in the composition of the fish community through the northward extension of southern 

species (Fossheim et al. 2015, Andrews et al. 2019, see Chapter 6). Pressure on the 

polar fish populations will lead to major changes in the population structure. Genetic 

monitoring in addition to ecological monitoring can provide the necessary information for 

informed management decisions. Although we have been focussing on genetic methods, 

integrated genetic, microchemical and biophysical/niche modelling is recommended to 

understand stock structure, connectivity and distribution in an environmental context 

(e.g. Selkoe et al. 2016).  
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3.5. Critical gap analysis 

Table 3.2. Critical gap analysis for variables relevant for species, population dynamics and 
distribution of pelagic and benthic fish in the CAO. Estimate of severity of the knowledge gap: 0 = 
no knowledge, 1 = serious lack of knowledge, 2 = insufficient knowledge, 3 = sufficient knowledge 
available for the purpose indicated in column 2. 

Variable Why the variable is necessary 
to evaluate possibilities for 
potential future fisheries 

Estimate of severity 
of the knowledge 

gap 

What data needs to be 
collected to decrease the 
gap? 

Pelagic fish data in the 
CAO (species, population 
structure, geographical 
distribution) 

The minimum basic data for 
modelling and assessment of 
fish stocks in the CAO 

0 Acoustics in combination with 
oceanography and scientific 
surveys of the pelagic food 
web across the CAO 

Benthic fish data 
 in the CAO (species, 
population structure, 

geographical distribution) 

The minimum basic data for 
modelling and assessment of 
fish stocks in the CAO 

0 Scientific surveys of the 
benthic food web across the 
CAO 

Food sources Food-web interactions in a 
permanently ice-covered sea 
for modelling and assessment 
of fish stocks in the CAO 

0 Comparative studies of the 
diversity and functioning of 
the pelagic and benthic food 
webs in the CAO 

Predators Food-web interactions in a 
permanently ice-covered sea 
for modelling and assessment 
of fish stocks in the CAO 

1 Comparative studies of the 
diversity and functioning of 
the pelagic and benthic food 
webs in the CAO 

Effects of disappearance 
of sea-ice on the pelagic 
and benthic food webs in 
the CAO 

Food-web interactions in a 
changing environment for 
modelling and assessment of 
fish stocks in the CAO 

1 Comparative studies of the 
diversity and functioning of 
the pelagic and benthic food 
webs between ice-covered 
and non-ice-covered waters 
in the CAO 
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Chapter 4. Sympagic fish: species, population dynamics, distribution  

Hauke Flores (AWI), Filip Volckaert (KU Leuven) 
 

4.1. Chapter summary 

Boreogadus saida is the most abundant fish in the shelf/slope regions of the Arctic 

Ocean. The juvenile individuals of this species are associated with sea ice (“sympagic”), 

including in the CAO, which they use as a foraging ground and a shelter from predators. 

Besides Boreogadus, Arctogadus also associates with sea ice during the first part of its 

life cycle. Arctogadus populations seem to be centered in the region north of Greenland 

and the Canadian Arctic Archipelago. Their distribution in the CAO is unknown. There is 

widespread evidence that sympagic Boreogadus occur throughout the CAO, but data are 

scattered in space and time, and there is almost no quantitative information. A first 

systematic under-ice survey in the Eurasian Basin found evidence that the Transpolar 

Drift transports young Boreogadus from hatching areas on the Siberian shelf across the 

CAO. This trans-polar gene flow is supported by population genetic analyses. Based on 

the paucity of quantitative information on sympagic Boreogadus available to date, their 

total population size in the CAO remains undetermined. We also have limited knowledge 

about the connection between sympagic and mesopelagic populations, vertical 

migrations, and winter survival.  

 

4.2. Background 

Sea ice constitutes a highly dynamic and multi-facetted habitat for fishes. A part of the 

sea-ice habitat is attached to the coast and is called “landfast sea ice”, or “fast ice”. It 

offers a highly stable environment as long as it persists. Most of the Arctic sea ice, 

however, consists of pack-ice drifting freely on the ocean surface. The Arctic pack-ice is 

highly dynamic, as it moves with the ocean currents and is deformed, creating a highly 

heterogeneous icescape of pressure ridges, open leads and flat ice floes. An increasingly 

large part of the Arctic sea ice melts during summer (first-year ice: FYI), adding a 

progressively seasonal component to the dynamics of the sea-icescape. Ice floes that 

survive the melting season can persist in the Arctic Ocean for several years and are 

called multi-year ice (MYI). The proportion of MYI in Arctic sea ice has been decreasing 

rapidly during the past decades (Meier et al. 2014). Polar fishes use sea ice as a 

protection from predators, as a foraging ground, and as a nursery habitat for eggs, 

larvae and juveniles (Andriyashev et al. 1980, Lønne & Gulliksen 1989, Bouchard et al. 

2016, Nahrgang et al. 2016, Kohlbach et al. 2017). The use of the sea-ice habitat by 

these ice-associated (“sympagic”) fishes can be expected to vary with the changing 

dynamics of its physical properties, e.g. topography, drift trajectories or proportion of 

MYI versus FYI.  

In the Arctic Ocean, two closely related fish species have been assumed to employ a 

sympagic mode of life at least during parts of their life cycle: Boreogadus and 

Arctogadus. Boreogadus is assumed to be the most abundant fish in the CAO and in the 

bordering shelf/slope regions belonging to the Arctic High Seas. The juvenile (1-2 years 

old) individuals of this species are often associated with sea ice, which they use as a 

foraging ground and as a shelter from predators (Lønne & Gulliksen 1989, Gradinger & 

Bluhm 2004). Knowledge on the abundance and distribution of Boreogadus under Arctic 

sea ice has predominantly been anecdotal, non-quantitative, and spatially and temporally 

limited in the past (Walters 1961, Andriyashev 1957, Melnikov & Chernova 2013). Only 

recently, a first quantitative under-ice survey in the Eurasian Basin estimated a minimum 

biomass of fish dwelling in the ice-water interface layer of about 15 kg km-2 (David et al. 

2016). The Transpolar Drift probably transports young Boreogadus from hatching areas 

on the Siberian shelf across the CAO to the Svalbard / Barents Sea region and northern 
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Greenland (David et al. 2016). The Arctogadus has a similar circumpolar distribution as 

Boreogadus, but there is no evidence of sympagic Arctogadus from the European Sector 

of the Arctic Ocean. Due to its overall lower abundance, this species has received far less 

attention than Boreogadus. Arctogadus is generally considered a rather benthic species, 

but a few observations indicate also a sympagic mode of life for the early life stages 

(Walters 1961, Tsinovsky 1980, Bouchard et al. 2016). 

Published knowledge on sympagic fishes in the Arctic Ocean dates back to the 1940s 

(Andriyashev 1957). However, information on sympagic Boreogadus and Arctogadus has 

been discontinuous in time and scattered in space, and quantitative information is rare. 

Here we review the available information following a scrutinized approach using multiple 

databases, and including both peer-reviewed scientific articles, and reports. Following 

this inventory, we perform a gap analysis focusing on the taxonomic, spatial and 

temporal coverage of the published data in order to identify priorities for future research 

directed towards a stock assessment of sympagic fishes in the Arctic High Seas, and an 

assessment of the future prospect of these stocks under climate change scenarios. 

 

4.3. Summary of literature searches 

We conducted searches in the public research databases Web of Science, Scopus, Google 

Scholar, and Publications.europa.eu. With the search terms used, we aimed to limit the 

result to publications addressing Arctic ice-associated fishes, but at the same time to 

minimize the risk that relevant publications were missed. All queries comprised the terms 

“Arctic Ocean”, “fish”, and “sea ice”, but we varied the search terms according to the 

different search syntaxes in the different databases. The scientific research databases 

Web of Science and Scopus allowed for the most precise expression of the queries. Here, 

we included also the two presumably sympagic fish genera “Arctogadus” and 

“Boreogadus” in combination with the term “sea ice”. The search comprised the entire 

temporal coverage of the four databases. We generally allowed the databases to return 

all types of publications. Only in Publications.europa.eu we excluded legal documents. 

The output of the different databases was quite variable in terms of number of 

discovered publications, publication type, and temporal coverage. The two scientific 

databases Web of Science and Scopus yielded similar amounts of publications (126 and 

157, respectively) and covered a similar time period (1992-2019 and 1986-2019, 

respectively; Table 4.1). The publication type composition was clearly dominated by 

original research articles. Google Scholar yielded a considerably lower number of 

publications (73), but covered a longer time period in the past (1971-2019; Table 4.1). 

The European database Publications.europa.eu returned the largest number of 

publications (180) and covered a similar time period as Web of Science and Scopus 

(Table 4.1). The publication type composition was clearly dominated by reports directed 

at policy and resource management. Overall, the vast majority of publications identified 

by the four databases did not contain specific data about sympagic fishes. Only 23 

publications contain such specific information (Table 4.2). 

 

4.4. Summary of knowledge  

The inventory of the published literature on sympagic fishes in the Arctic Ocean was 

based on the outcome of the database queries, but was extended by historical records 

from earlier years not covered by the four databases. The earliest records of Boreogadus 

and Arctogadus observed under sea ice dated back to the 1940s (Andriyashev 1957). 

Since that time, observations were reported in almost every decade, ranging from only 

one report per decade between 1950 and 1980, to up to nine reports between 2011 and 

2019. No observations were reported between 1991 and 2000 (Table 4.2). The vast 

majority of reported observations were performed using effective, but non-quantitative 

sampling equipment, such as traps, hand nets, hooked lines and observations by SCUBA 
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divers. Quantitative information on under-ice fishes is scarce and was based on line 

transect surveys by divers (Gradinger & Bluhm 2004), bottom trawls (Hop & Gjøsæter 

2013). Reported Boreogadus abundances from under-ice trawls vary significantly, 

ranging between 0 ind. km-2 to 16,000 ind. km-2 (David et al. 2016, Flores et al. 2016, 

2018). The few available reports on potentially sympagic Arctogadus were from the 

western Arctic Ocean (Walters 1961, Andriyashev 1957, Andriyashev et al. 1980, 

Tsinovsky 1980, Bouchard et al. 2016).  

 
Table 4.1. Results of database research with search terms relevant for the sympagic habitat. The 

literature searches were made in May 2019. n.a. = not applicable 

Database Search terms 
No of 

publica-
tions 

No of 
original 
Articles 

No of 
reviews 

No of other 
publica-

tions 
Period 

Web of 
Science 

TS=((“Arctic Ocean” AND “sea 
ice” AND “fish*”) OR 
(“Boreogadus” AND “sea ice”) 
OR (“Arctogadus” AND “sea 
ice”)) 

126 109 15 8 1992-2019 

Scopus TITLE-ABS-KEY((“Arctic Ocean” 
AND “sea ice” AND “fish*”) OR 
(“Boreogadus” AND “sea ice”) 
OR (“Arctogadus” AND “sea 
ice”)) 

157 127 13 17 1986-2019 

Google 
Scholar 

“Central Arctic Ocean” “sea ice” 
“Boreogadus” “Arctogadus” 

73 n.a. n.a. 73 1971-2019 

Publications.
europa.eu 

“Arctic Ocean” “fish*” “sea ice” 180 n.a. n.a. 180 1990-2019 

 

 

Observations on sympagic Boreogadus are available from all sectors of the Arctic Ocean, 

but comparable observations were never made in two or more regions during one year. 

The majority of observations of sympagic Boreogadus were made during summertime. 

However, year-round sampling on drift stations indicates that sympagic Boreogadus are 

found throughout the Arctic Ocean during all seasons (Walters 1961, Andriyashev 1957, 

Melnikov & Chernova 2013, Bouchard et al. 2016). All studies reporting size data on 

sympagic Boreogadus indicated that the under-ice population consists mainly of first year 

and second year juveniles (e.g. Bradstreet & Cross 1982, Lønne & Gulliksen 1989, 

Melnikov & Chernova 2013, David et al. 2016). It has been proposed that these young 

sympagic Boreogadus were recruited from late-hatched cohorts on the shelves that were 

accidentally advected into the CAO. However, a study using acoustic telemetry of tagged 

young Boreogadus showed they perform long-distance seasonal migrations, indicating 

that they would be able to counter-act advection into unfavourable areas (Kessel et al. 

2017). Another hypothesis suggested that the sea ice is used as a transport vector 

connecting different populations around the Arctic Ocean (David et al. 2016).  

A large body of literature is available on the diet of Boreogadus, as well as its role as a 

prey item for Arctic seabirds and mammals. Only few reports on the trophic ecology of 

Boreogadus, however, are available from Boreogadus dwelling under Arctic sea ice. 

These studies show that sympagic Boreogadus feed predominantly on sympagic 

invertebrates, such as ice amphipods and copepods grazing ice algae (Lønne & Gulliksen 

1989, Bouchard et al. 2016, Kohlbach et al. 2017). Studies on seabirds foraging in ice-

covered waters indicate that sympagic Boreogadus constitute an important food source 

for the birds (Lønne & Gabrielsen 1992, Mehlum & Gabrielsen 1993). Linking the 

presence of Boreogadus in the diet of warm-blooded predators to sea ice habitats, 

however, is inherently associated with uncertainties, as long as the predator was not 

observed catching fish from the under-ice habitat.  
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Table 4.2. Observations of ice-associated fishes in the Arctic Ocean. * = summarized in 
Mecklenburg et al. (2014). Observation type is not specified as e.g. numbers here because the 

reported numbers have very different dimensions (e.g. observations per minutes, numbers of fish 
caught, abundance in individuals km-2, etc.) and were obtained with very different methods 
(SCUBA diving, dynamite, landing net, under-ice trawl, etc.), which makes it impossible to 
compare them. The important point here is whether data were at all available in quantitative 
terms. This table shows that there is very little quantitative information available, but many reports 
indicate the “presence” of fish, which is very important. We believe it is much more valuable to 
know the quality and type of the data than some incomparable figures. 

Species Year Region Season Source 
Sampling 
method 

Observation type 

Boreogadus 
1972-
2011 

Barents Sea 
Various 
seasons 

Hop & Gjøsæter (2013) 
Time series 
analysis 

Abundance, 
distribution and 
ecology 

Boreogadus 
1985-
1986 

Barents Sea, 
north of 
Svalbard 

Summer 
Lønne & Gabrielsen 
(1992) 

Sea bird survey 
and sampling 

Presence in diet 
of seabirds 
foraging in ice-
covered waters 

Boreogadus 
1986-
1987 

Barents Sea, 
north of 
Svalbard 

Summer 
Lønne & Gulliksen 
(1989) 

Divers and 
traps 

Presence and diet 

Boreogadus 2017 
Barents Sea, 
north of 
Svalbard 

Spring Flores et al. (2018) Under-ice trawl 
Abundance and 
distribution 

Arctogadus & 

Boreogadus 

2004 
and 
2008 

Beaufort Sea Summer Bouchard et al. (2016) Under-ice net Presence and diet 

Boreogadus 1979 
Canadian Arctic 
Archipelago 

Summer 
Bradstreet & Cross 
(1982) 

Divers, traps 
and spears 

Presence  

Boreogadus 2012 
Canadian Arctic 
Archipelago 

Summer Kessel et al. (2017) 
Acoustic 
tagging 

Presence and 
behaviour 

Boreogadus 
2012-
2013 

Canadian Arctic 
Archipelago 

Summer Kessel et al. (2016) 
Acoustic 
tagging 

Presence and 
behaviour 

Arctogadus & 
Boreogadus * 

1940s 
to 
1980s 

CAO 
Various 
seasons 

Andriyashev (1957) 
Andriyashev et al. 
(1980), Tsinovsky 
(1980), Tsinovsky 
(1981) 

Hand nets and 
hooked lines 
from drift 
stations 

Presence 

Boreogadus 2002 
CAO  
(Canada Basin) 

Summer 
Gradinger & Bluhm 
(2004) 

Under-ice 
survey (divers) 

Distribution and 
behaviour 

Boreogadus 
2009-
2010 

CAO  
(Canada Basin) 

Winter 
Melnikov & Chernova 
(2013) 

Under-ice 
sampling (net) 

Presence and 
behaviour 

Boreogadus 2012 
CAO  
(Eurasian 
Basin) 

Summer-

autumn 
David et al. (2016) Under-ice trawl 

Abundance and 

distribution 

Boreogadus 2012 
CAO  
(Eurasian 
Basin) 

Summer-
autumn 

Kohlbach et al. (2017) 
Diet & 
biomarker 
analysis 

Diet and carbon 
sources 

Boreogadus 
2012-
2015 

CAO  
(Eurasian 
Basin) 

Spring, 
summer, 
autumn 

Kühn et al. (2018) 
Microplastic 
analysis 

Microplastic 
ingestion 

Arctogadus & 
Boreogadus 

1959-
1960 

Chukchi Sea Summer Walters (1961) 
Dynamite ice 
fishing 

Presence 

Boreogadus 
1978-
1979 

Chukchi Sea 
Year-
round 

Tsinovsky (1981) 
Divers and 
hand nets 

Presence 

Boreogadus 2015 
North of 
Svalbard 

Spring Flores et al. (2016) Under-ice trawl 
Abundance and 
distribution 

Boreogadus 
1982-
1990 

Svalbard region Summer 
Mehlum & Gabrielsen 
(1993) 

Sea-bird survey 
and sampling 

Presence in diet 

of seabirds 
foraging in ice-
covered waters 
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Analysing genetic diversity and decomposing single species into genetic units, e.g. (sub-) 

populations, is important to understand biogeographical patterns and stock structure, 

and to improve predictions on the effects of climate change on the distribution range, 

abundance, competition with boreal species and role in the food web (Marcer et al. 2016, 

McNicholl et al. 2018). Despite the ecological significance of Boreogadus and Arctogadus, 

their large-scale population structure and connectivity patterns remain largely 

undescribed. 

Ghigliotti et al. (2005) found chromosomal intraspecific polymorphisms in Boreogadus 

and Arctogadus, and two karyomorphs (2n = 36, 38) and three karyomorphs (2n = 28, 

30, 32), respectively. These preliminary results point to a degree of genomic plasticity. 

Mitochondrial and nuclear DNA markers, such as DNA microsatellite markers (also called 

“Single Sequence Repeats”) also provide valuable information on intraspecific variation. 

Sets of 19 and 16 microsatellite loci were used for the examination of the population 

genetics of Boreogadus and Arctogadus, respectively (Nelson et al. 2013). The number of 

alleles observed for each locus ranged from 3 to 33 in Boreogadus and 1–22 in 

Arctogadus. Observed heterozygosities ranged from 0.02 to 0.93 in Boreogadus and 

0.17–1.0 in Arctogadus. Species-specific differences were observed at selected loci 

providing identification tools of these two morphologically similar Arctic gadids (Nelson et 

al. 2013). 

In the northern Atlantic Ocean, little to no geographic structure of Boreogadus was found 

(Fevolden et al. 1999, Pálsson et al. 2009). In the Pacific Arctic Ocean, Wilson et al. 

(2017) described overall high levels of genetic diversity, but no spatial divergence within 

and between Beaufort, Bering, and Chukchi Sea Boreogadus. On the other hand, Madsen 

et al. (2016) described genetic differentiation between fjord and oceanic Boreogadus in 

the Greenland Sea. Hence, a high level of connectivity across the Arctic Ocean and 

differentiation between inshore and offshore populations point to spatially differentiated 

evolutionary dynamics of Boreogadus. Ongoing genomic studies with high resolution 

markers aim at differentiating between neutral and adaptive evolution (Volckaert, pers. 

comm.). In addition, biophysical modelling of larval dispersal, such as implemented in 

northern Atlantic species, is a promising tool to understand the distribution and 

population dynamics (Hufnagl et al. 2017, Barbut et al. 2019). No population genetic 

studies or genomic studies (Baalsrud et al. 2018) focussing on stock structure of 

Arctogadus have been published.  

 

4.5. Critical gap analysis 

Our review of the published observation of ice-associated fishes in the Arctic Ocean 

shows that records on the two sympagic species Boreogadus and Arctogadus are 

scattered in space and time (Table 4.2). The knowledge base on Arctogadus is 

particularly thin. This species appears to be mainly distributed in the Amerasian sectors 

of the Arctic Ocean and, so far, there is no evidence of sympagic Arctogadus in the 

Eurasian sectors. Only few studies sampling Boreogadus under Arctic sea ice also found 

Arctogadus (Walters 1961, Andriyashev 1957, Andriyashev et al. 1980, Tsinovsky 1980, 

Bouchard et al. 2016), indicating that this species may not be as much associated with 

sea ice as Boreogadus. This notion is supported by a more benthic diet compared to 

Boreogadus (Bouchard et al. 2016).  

If we combine all observations from almost eight decades, we may conclude that young 

Boreogadus are found associated with sea ice throughout the Arctic Ocean (Table 4.2). 

Due to the poor spatial coverage in any given year, however, there is no solid evidence 

of a continuous distribution range. More importantly, the few available semi-quantitative 

abundance estimates using varying methods at different spatial scales impede pan-Arctic 

estimates of population sizes, distribution patterns and investigations of their inter-

annual variability. In addition, since studies on sympagic Boreogadus were not combined 
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with pelagic or benthic sampling, there is no information on which proportion of the 

standing stock in a given area is sympagic compared to pelagic and benthic distributions, 

and whether vertical migrations take place between the different depth layers. Only two 

studies investigated the distribution of under-ice Boreogadus in relation to sea ice habitat 

properties, and found that higher fish abundance was associated with thicker ice, higher 

ice coverage and lower surface salinity, or with higher densities of the ice-amphipod 

Apherusa glacialis (Gradinger & Bluhm 2004, David et al. 2016). To predict the effect of 

changing sea-ice habitats on the distribution of sympagic Boreogadus, however, detailed 

knowledge about the association of Boreogadus with sea-ice habitat properties and its 

geographic and seasonal variability would be crucial. Another important aspect for future 

predictions is whether adult or juvenile Boreogadus undertake horizontal migrations, 

potentially through deep waters, in order to return to spawning areas. The few available 

studies indicate that they may passively drift with sea ice across the CAO, but that they 

are also capable of migrations over distances of hundreds of kilometres (David et al. 

2016, Kessel et al. 2017). To date, there is no solid evidence of long-range migrations 

across the Arctic Ocean, or of migrations of individual fish from one spawning stock to 

another. The effect of such trans-polar migrations on the gene flow between populations 

is presently not understood due to a lack of high-resolution sequencing studies of the 

fine-scale population structure around the Arctic Basin. To assess the viability of 

sympagic Boreogadus populations at present and under future scenarios, quantitative 

information about their diet composition and prey populations is also essential. A diet 

study in the Eurasian Basin found that sympagic Boreogadus source the bulk of their 

carbon demand from ice algal production, by feeding on sympagic amphipods and 

copepods dwelling at the ice-water interface (Kohlbach et al. 2017). An assessment of 

the food demand of the fish population and the standing stock biomass of their prey 

species indicated that, even in the low-productive CAO, prey stocks were sufficient to 

support the observed abundances of sympagic Boreogadus (David et al. 2015, 2016, 

Kohlbach et al. 2017). The few available diet studies on sympagic Boreogadus, however, 

are insufficient to conclude about the geographic, seasonal and inter-annual variability of 

their feeding and prey availability (Table 4.2).  

  
 

 

 

 

 

 

 

Figure 4.1 Spatial 

coverage of reported 
samples of Boreogadus or 
Arctogadus under sea ice as 
shown in Table 4.2. The 

sample locations are 
grouped by sampling 
decade. The arrows indicate 
the approximate drift 
trajectories of the 3 Russian 
drift stations from which 
Boreogadus were reported: 

NP-6 (1956-1958), NP-19 
(1969-1970), and NP-22 
(1973-1982).  
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Based on the scant quantitative information on sympagic Boreogadus available to date, 

their total population size in the CAO remains undetermined. We also have limited 

knowledge about the connection between sympagic and mesopelagic populations, vertical 

migrations, seasonal patterns of habitat use and feeding, and gene flow between 

populations. Besides Boreogadus, Arctogadus can also associate with sea ice during part 

of its life cycle. Knowledge in their occurrence in coastal waters is limited, and their 

potential distribution in the CAO is unknown. The present documentation of observations 

of sympagic fishes in the Arctic Ocean is likely biased towards western literature. More 

information may become available as historic publications from Russian/Soviet authors 

would become accessible through translation and digitalization. Stronger efforts to 

integrate knowledge of local and indigenous communities may further enhance the 

knowledge base on sympagic fishes. 

Future research on Arctic sympagic fishes should aim for more comprehensive and 

standardised quantitative surveys of sympagic fishes in combination with environmental 

properties. A key focus should be on large-scale studies in order to estimate standing 

stock sizes, on vertical and horizontal migrations, and on the seasonal variability of fish 

distribution, their feeding and prey stocks. New technologies, such as autonomous 

hydroacoustic buoys with upward-looking echosounders, gliders and AUVs must be used 

to obtain a quantitative understanding of fish distribution under Arctic sea ice.  

 

Table 4.3. Critical gap analysis for variables relevant for species, population dynamics and 
distribution of sympagic fish in the CAO. Estimate of severity of the knowledge gap: 0 = no 
knowledge, 1 = serious lack of knowledge, 2 = insufficient knowledge, 3 = sufficient knowledge 
available for the purpose indicated in column 2. 

Variable Why the variable is necessary 
to evaluate possibilities for 
potential future fisheries 

Estimate of severity 
of the knowledge 

gap 

What data needs to be 
collected to decrease the 
gap? 

Sympagic distribution and 
abundance of Boreogadus 

To estimate stock size and 
potential impact of potential 
fisheries on other target 
species on Boreogadus 

1 Standardized abundances of 
Boreogadus throughout the 
Arctic Ocean from under-ice 
habitat 

Sympagic distribution and 
abundance of Arctogadus 

To estimate stock size and 
potential impact of potential 
fisheries on other target 
species on Arctogadus 

0-1 Standardized abundances of 
Arctogadus throughout the 
Arctic Ocean from under-ice 
habitat 

Horizontal and vertical 
migrations of Boreogadus 

To understand migration 
patterns, refugee areas and 
critical bottlenecks for 
sustainable management 

1 Tracking data, sea ice and 
ocean models, otolith tracers  

Genetic population 
structure & gene flow 

To identify populations and 
subpopulations for 
sustainable management 

2 Next Generation Sequencing 
for high-resolution population 
genomics 

Winter survival To establish mortality indices 
for sustainable management 

1 Winter condition, migration 
patterns and winter prey field 

Food sources To estimate carrying capacity 
for future ecosystem 
scenarios 

2 Year-round diet and 
ontogenetic changes, 
sympagic prey stocks 

Sympagic predators To estimate impact of fish 
mortality on ecosystem 
performance 

2 Predator censuses (sympagic 
seals and birds) and diet 
studies 
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Chapter 5. Food web and trophic interactions  
Barbara Niehoff (AWI), Hauke Flores (AWI) 
 

5.1. Chapter summary 

Arctic gadoid fishes are planktivorous and thus depend on the availability of their prey, 

mainly copepods and amphipods. Especially the large, lipid rich Calanus species 

(Copepoda) rely on (the relatively large) diatoms, from both sea ice and water column. 

Ice algae are also the dominant prey for e.g. the herbivorous amphipod Apherusa 

glacialis. Carnivorous amphipods such as Themisto libellula feed on Calanus, also 

channelling algal production to higher trophic levels. In the CAO, the zooplankton 

biomass is low as compared to the marginal ice zone and shelf areas; high abundances 

are only associated with the inflow of Atlantic water. The vertical zooplankton 

distribution, and thus the prey field of Arctic fishes, changes from maximum abundances 

in the sea-surface layer in summer to maximum abundances in deeper waters in winter. 

Increasing inflow of warm Atlantic water into the Arctic, ocean acidification and receding 

sea-ice cover promote the dominance of small phytoplankton cells such as flagellates. 

Boreal zooplankton species migrate further north and environmental changes may alter 

the vertical zooplankton distribution. Such shifts in the pelagic community are expected 

to severely impact the population dynamics of Arctic fishes and, thus, ecosystem 

functioning and services.  

 

5.2. Background 

Arctic gadoid fishes are prey of many marine mammals and birds (Bluhm & Gradinger 

2008). At the same time, they - as zooplanktivorous species - depend on the availability 

of their prey, mainly copepods and amphipods (Bradstreed & Cross 1982). While there 

are many studies on distribution, community composition and population dynamics of 

zooplankton in the Northern Hemisphere (e.g. 1010 publications listed by the Web of 

Science (WoS) for zooplankton and “North Atlantic”), much less is known on the 

zooplankton in the Central Arctic Ocean (CAO). The general consent is that the 

zooplankton biomass is quite low in the CAO (Mumm et al. 1998, Auel & Hagen 2002, 

Kosobokova & Hirche 2002). Recent studies by David et al. (2015) and Kohlbach et al. 

(2017) nevertheless indicate that the zooplankton prey stocks may be sufficient to 

support the observed abundances of sympagic Boreogadus (see Chapter 4). Our 

knowledge has, however, mostly been derived from summer studies; data on population 

dynamics and distribution patterns in the CAO in winter are scarce. This chapter 

summarizes the literature on zooplankton in the CAO, focusing on the two large 

crustacean orders, copepods and amphipods, which not only dominate the communities 

(copepods usually contribute at least 60% of the zooplankton biomass) but are also the 

main food sources for Boreogadus and Arctogadus.  

 

5.3. Summary of literature searches 

We searched for publications on zooplankton dynamics in the CAO in the public research 

databases Web of Science, Scopus, Google Scholar, and Publications.europa.eu, using a 

large variety of terms (e.g. “Arctic Ocean”, “zooplankton”, “food web”, “fish”, “diet” and 

“Calanus”; see Table 5.1 for specific terms). The searches addressed all types of 

publications, except for Publications.europa.eu where legal documents were excluded.  

In general, the output of all databases was low (Table 5.1), with Google Scholar yielding 

the maximum of 51 publications and the broadest temporal coverage (1968-2019). 

Searches in the databases Web of Science and Scopus found 42 and 29 publications, 
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respectively, and covered almost the same period (1978-2018/2019). In these two 

databases, the number of original articles clearly prevailed (Table 5.1). The European 

database Publications.europa.eu returned lowest number of publications (11) and 

covered only recent years (2001-2017). Here, the publications were dominated by 

reports directed at policy and resource management.  

 
Table 5.1. Results of database research with search terms relevant for the food web and trophic 
interactions in the CAO. n.a. = not applicable. 

Database Search terms 
No of 

publica-
tions 

No of 
original 
Articles 

No of 
reviews 

No of 
other 

publica-
tions 

Period 

Web of 
Science 

TS= ((“Central Arctic Ocean” 
AND “zooplankton”) OR (“Central 
Arctic Ocean” AND “Calanus”) OR 
(“Central Arctic Ocean” AND 
“food web”) OR (“Central Arctic 
Ocean” AND “food” AND “fish*”)) 

42 32 10 3 1978-2019 

Scopus TITLE-ABS-KEY ((“Central Arctic 
Ocean” AND “zooplankton”) OR 
(“Central Arctic Ocean” AND 
“Calanus") OR (“Central Arctic 
Ocean” AND “food web”) OR 
(“Central Arctic Ocean” AND 
“diet" AND “fish*”)) 

29 27 2 n.a. 1978-2018 

Google 
Scholar 

“Central Arctic Ocean” 
“zooplankton” “food web *” 
“fish*” “diet” “Boreogadus” 
“mesopelagic”  

51 n.a. n.a. 51 1968-2019 

Publications.
europa.eu 

“Central Arctic Ocean” 
“zooplankton” “food web*” 
“fish*” “diet” 

11 n.a. n.a. 11 2001-2017 

 

The original articles (Table 5.2) mainly provide data on abundance, biomass and 

distribution of the zooplankton communities captured mostly during summer. Moreover, 

some papers, although found by using “Arctic Ocean” as a search term, do not present 

data from the CAO but from adjacent areas such as Fram Strait (Kraft et al. 2013) and 

the Greenland Sea (Tremblay et al 2006). Unfortunately, the literature research did not 

provide key publications such as Kosobokova & Hirche (2009), Kosobokova & Hopcraft 

(2010) and Kosobokova et al. (2011), or the review paper by Bluhm et al. (2015), 

because they used “Arctic Central Basin” or “Canada Basin” instead of “Central Arctic 

Ocean”. 

 

5.4. Summary of knowledge  

The marine food web of Arctic shelf seas and its changes associated with decreasing ice 

cover have been summarized by CAFF (2017, Figure 5.1). For the CAO, no such 

illustrations exist because of severe gaps in our knowledge about the food-web 

components and their interactions. It is expected that the marine food web in the CAO 

has less components than the food webs in Arctic shelf seas (e.g. no Atlantic cod or 

capelin) and that it is less productive. In the CAO, the extreme seasonality in the light 

regime and the (permanent) sea-ice cover severely limits the primary production and, 

consequently, the biomass of zooplankton is low as compared to the marginal ice zone 

and the shelf areas of the Arctic (reviewed by Bluhm et al. 2015; Figure 5.2). For 

example, Auel & Hagen (2002) have shown that the biomass in summer in the CAO 

integrated over the upper 1,500 m of the water column was 2.0 (SD 0.3) g Dry Mass 
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(DM) m-2. In the relatively shallow and not permanently ice-covered Barents Sea, 

biomasses integrated over the upper 200 m were between 5 and 22 g DM m-2 with 

highest values associated with the inflow of Atlantic water (Dalpadado et al. 2003). 

Similarly, Kosobokova & Hirche (2009) found low biomass (1.9 DM g m-2) in the centres 

of the Arctic basins north of 86 oN while the biomass was elevated along the Eurasian 

continental margin in relation to the advection of Atlantic pelagic populations, and the 

highest biomasses (up to 23.9 DM g m-2) were associated with the core of the Atlantic 

inflow. Thus, the zooplankton biomass, which could support fish stocks seems to be 

much lower in ice-covered areas as compared to the slopes and shelfs with open-water 

regions, and the carbon flux from primary production to higher trophic levels appears to 

be comparably low in the CAO.  

 

 
Figure 5.1. Concepts of energy flows at the ice edge in the Arctic shelf seas; the food-web 
structure in the CAO is yet unknown but is expected to be different (e.g. without Atlantic cod and 
capelin). Upper panel: Through the Arctic marine food web, energy and nutrition are transferred 
from primary producers to higher trophic levels including birds, fish, mammals, and humans. Lower 
panel: Changes expected or underway in the energy flow in the High Arctic marine environment. 

Figure from CAFF (2017). 
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Table 5.2. Relevant papers for the food web and trophic interactions in the CAO identified by the 
database research presented in Table 5.1. 

Taxon Year Region Season Source 
Sampling 
method 

Observation type 

Copepods 
1970-
1972 

CAO All seasons Dawson (1978) Vertical net Population study 

Mesozooplankton 
1987-
1991 

CAO Summer Mumm et al. (1998) Vertical net 
Community study & 
distribution analysis 

Mesozooplankton 1994 CAO Summer 
Thibault et al. 
(1999) 

Vertical net 
Community study & 
distribution analysis 

Mesozooplankton 1991 CAO Summer 
Auel & Hagen 
(2002) 

Vertical net Community study 

Mesozooplankton 
1993-
2000 

Greenland 
Sea 

All seasons Møller et al. (2006) 
Vertical net, 
pump 

Community study 

Zooplankton 1998 
North 
Water 
Polynia 

Spring-
summer 

Tremblay et al. 
(2006) 

Various Food web study 

Amphipods 
2001-
2012 

Fram Strait All seasons Kraft et al. (2013) 
Sediment 
traps 

Population study 

Under-ice fauna 2012 CAO 
Summer-
autumn 

David et al. (2015) 
Under-ice 
trawl 

Community study 

Under-ice fauna 2012 CAO 
Summer-
autumn 

Kohlbach et al. 
(2016) 

Under-ice 
trawl 

Food web study 

Boreogadus 2012 CAO 
Summer-
autumn 

Kohlbach et al. 
(2017) 

Under-ice 
trawl 

Diet study 

Calanus 
hyperboreus 

1934-
2015 

CAO All seasons Kvile et al. (2018) Various Lyfe cycle study 

 

 

 

 

 
 

Figure 5.2. Zooplankton biomass (g dry 
weight m-2) distribution in the Arctic 
Ocean. Note that there are only a few 
stations in the CAO while shelf and coastal 

areas are relatively well studied. Figure 

from Bluhm et al. (2015). 
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The mesozooplankton biomass distribution is often high at the surface and decreases 

with depth (Auel & Hagen 2002, Kosobokova & Hirche 2009). In summer in the CAO, the 

highest mesozooplankton values of up 26 mg DM m-3 were found in the upper 50 m (Auel 

& Hagen 2002), whereas the biomass did not exceed 2 mg DM m-3 in the layer between 

200 and 500m, and was even lower below 500 m (Auel & Hagen 2002). All studies have 

used plankton nets deployed from research vessels and could therefore not consider that 

the ice provides a special habitat for not only fishes but also for zooplankton (Werner & 

Martinez Arbizu 1999, Hop et al. 2000, Werner & Gradinger 2002, Werner & Auel 2005, 

David et al. 2015, Kohlbach et al. 2016). The food regime for the Arctic fish may thus not 

only be evaluated by the total biomass per m2 but also by its vertical and horizontal 

distribution, leading to food patches which can more easily be exploited by fish. 

In terms of species inventory in the central Arctic basins, a total of 174 multi-cellular 

zooplankton species from eight phyla were registered, dominated by crustaceans, and 

primarily copepods (Kosobokova et al. 2011). Among these, copepods and amphipods 

constitute major food sources for Arctic planktivorous fish (Bradstreet & Cross 1982). 

Arctic copepods cover a wide size range, from eggs and nauplii of about 50 µm diameter 

to adult females and males of up to 2 cm lengths (Mauchline 1998). In most marine food 

webs, herbivorous calanoid copepods are an important link between primary production 

and higher trophic levels, and the herbivorous species may even control phytoplankton 

development in marine areas (Bathmann et al. 1990, Båmsted et al. 1991, Nejstgaard et 

al. 1995). While larger copepodites and adult copepods are mainly consumed by fishes, 

whales and larger invertebrates (e.g. Hardy 1924, Gaskin 1982, Lough & Mountain 

1996), fish larvae often feed on eggs and nauplii (e.g. Fortier et al. 1995, Michaud et al. 

1996). Thus, knowledge on the population dynamics of calanoid copepod is essential for 

the understanding and the quantification of fish recruitment (Runge 1988). However, the 

data on the timing of life cycle events such as spawning and ontogenetic migration in 

copepods, or the release of offspring from brood pouches of amphipods, have mostly 

been gathered in Arctic ice-free (shelf) areas and in fjords but not in the CAO.  

In the CAO, three large, lipid rich Calanus species, C. hyperboreus, C. glacialis and C. 

finmarchicus dominate the mesozooplankton biomass (Auel & Hagen 2002). C. 

hyperboreus is dominating the community in the basins of the CAO (Dawson 1978, 

Kosobokova 2003). From studies in Arctic shelf sea areas and fjords (e.g. Hirche 1998, 

Madsen et al. 2001, Kosobokova 2003, Søreide et al. 2008), it is well known that all 

three species perform strong vertical migration. During the productive season, they 

reside in surface waters (0-50 m), where feeding on pelagic unicellular algae fuels 

reproduction (Niehoff et al. 2002, Olli et al. 2007). C. glacialis, however, is long known to 

feed also on ice algae, which develop prior to the phytoplankton in the water column 

(Runge & Ingram 1991). Thus, they are able to start feeding and reproducing early in the 

season (Niehoff et al. 2002). C. hyperboreus has another reproductive strategy, 

producing eggs while residing at depth during winter based on its lipid reserves (Hirche & 

Niehoff 1996, Niehoff 2007). The nauplii and the young copepodite stages then migrate 

to the surface where they exploit the phytoplankton bloom, developing to their 

overwintering stages. While at the surface, the Calanus species do not only reproduce (C. 

glacialis and C. finmarchicus) and grow but they also build up large lipid stores, which 

makes them an extremely rich food source (Falk-Petersen et al. 2007).  

Data from the CAO on population dynamics and vertical distribution patterns of these 

three species are rare and have mostly been conducted during the summer season when 

the region is accessible by ice-breakers. Only very few studies (Dawson 1978, Ashjian et 

al. 2003, Kvile et al. 2018) cover several months to a year, confirming that also in the 

ice-covered Arctic ocean Calanus spp. perform ontogentic migration resulting in large 

shifts of biomass. This, in turn, considerably changes the prey field of Arctic fishes 

throughout the year. Whether or whether not also diel vertical migration (DVM) occurs, is 

still under debate. Some studies from the CAO did not find clear evidence for DVM 

(Kosobokova 1978, Groendahl & Hernroth 1984, Longhurst et al., 1984) while more 

recent studies in the Svalbard region and in Barrow Strait indicate that (some) 
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zooplankton species do perform diel vertical migration, even under ice cover (Fortier et 

al. 2001, Berge et al. 2009, 2012, 2015, Gjøsæter et al. 2017). 

While research has often concentrated on the large Calanus species due to their crucial 

role in the lipid based Arctic food web, the smaller copepod genera Metridia, 

Pseudocalanus, Microcalanus, Oithona, and Oncaea have generally received less attention 

because of their lower contribution to the total biomass than Calanus spp., although they 

are numerically quite abundant in many areas (Mumm et al. 1998, Ashjian et al. 2003). 

Moreover, these species exhibit different feeding modes and thus, occupy different niches 

in the Arctic food web. Metridia longa and Metridia lucens are omnivorous and their 

abundance peaks between 200 and 500 m (Diel 1991, Ashjian et al. 2003), and these 

species remain active during winter. Oithona is mostly found in the upper 50 min, and 

produces egg-sacs likely year-round, while the small Oncea species are usually found 

deeper in the ocean where they feed on marine snow but also on other 

mesozooplankton. Our knowledge about the timing of reproduction, their vertical 

migration patterns during the season and their role in the food web of the CAO is very 

limited, but these species could serve as food sources for Arctic fishes during the 

phytoplankton scarce winter season when the large Calanus species inhabit their 

overwintering habitat at depth > 1,000 m. 

Amphipods are usually larger than copepods and in contrast to copepods, which release 

their eggs into the water column or carry their eggs until hatching (Mauchline 1998), 

amphipods develop directly and carry their offspring in brood pouches, providing a food 

source of different quality. In the CAO, the two amphipod congeners, Themisto libellula 

and Themisto abyssorum co-occur sympatrically. They are carnivorous and prey on other 

mesozooplankton such as copepods, euphausiids, pteropods and chaetognaths (Hopkins 

1985, Falk-Petersen et al. 1987). Themisto abyssorum is a subarctic-boreal species, and 

is transported into the Arctic Basin mainly by the West Spitsbergen Current. Accordingly, 

its abundance decreases from >200 individuals m-2 in the core of the Atlantic inflow to 

<40 individuals m-2 in the central Arctic basins (Mumm et al. 1998). Themisto libellula 

reaches maximum abundances in the polar surface water of the Arctic Ocean and is 

considered a true Arctic species (Koszteyn et al. 1995). Due to its presence near the 

surface, the latter species especially represents an important and stable resource for 

Arctic marine vertebrates such as Boreogadus, Alle alle (little auk) as well as for Phoca 

hispida (ringed seal) and Pagophilus groenlandicus (harp seal) in the Barents Sea 

(Węsławski et al. 1999, Wathne et al. 2000). Ice algae are the dominant prey for the 

herbivorous amphipod Apherusa glacialis which is one of the amphipod species that is 

closely related to sea ice during at least parts of the year (Kohlbach et al. 2016). 

Carnivorous ice amphipods channel the algal production to higher trophic levels 

indirectly, e.g. Themisto spp. feeding on Calanus spp.  

 

5.5. Critical gap analysis 

Most studies indicate that the primary production in the CAO is too low to sustain its 

zooplankton stocks and that the populations are transported into the CAO either with the 

inflow of Atlantic water or from the Arctic shelf seas (e.g. Auel & Hagen 2002). This could 

imply that food supply for fishes could be extremely limited during some times of the 

year, and even though the availability of the prey may not change significantly in terms 

of numbers, the zooplankton organisms may simply not be accessible due to vertical 

migration to the deeper ocean. However, as there are no data, we can yet not evaluate 

the biomass of overwintering zooplankton nor their distribution. The spatial coverage of 

the studies to date does also not allow for estimating transport and sustainability of 

zooplankton biomass in the CAO. Most data have been collected during the productive 

season which is short and shifted towards late summer/autumn as compared to late 

spring/summer in Fram Strait and the fjords around Svalbard (e.g. Daase et al. 2013, 

Nöthig et al. 2015), and our understanding of the population dynamics of the prey 

zooplankton organisms as gathered from other areas can only be partly applied to the 
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CAO. Studies on trophic interactions using modern methods (e.g. compound specific 

stable isotope analysis, Kohlbach et al. 2016) are almost completely lacking. The 

distribution patterns as described so far rely mostly on relatively coarse depth intervals 

(covering the whole water column with only a few samples) collected by multi-opening 

and closing plankton nets. Studies on the fine scale distribution of zooplankton, which 

can reveal food patches, are lacking from the CAO. Year-round studies are urgently 

needed to assess the zooplankton stock, their population dynamics, their trophic 

interactions and their distribution patterns and, thus, the prey field for Arctic fishes.  

Increasing inflow of warm Atlantic water into the Arctic Ocean, acidification of sea-

surface waters and receding sea-ice cover promote the dominance of small 

phytoplankton cells such as flagellates (Li et al. 2009), and boreal zooplankton species 

may expatriate into the CAO (Hirche & Kosobokova 2007). In addition, such 

transformations of the environment may lead to changes in the vertical distribution of 

zooplankton species, since species differ in their vertical distribution patterns. 

Subsequently, this has the potential to change the trophic interactions in the pelagic 

ecosystems of the CAO. For example, shifts in the pelagic zooplankton communities may 

have positive or negative consequences for the feeding regime and the population 

dynamics of the Arctic fishes and, thus, ecosystem functioning and services. For 

modelling the population dynamics and abundance of the fish stocks in the CAO and 

assessing the impact of climate change on zooplankton and fish, year-round studies and 

studies with a large spatial coverage on both prey and predators, are essential.  

 

Table 5.3. Critical gap analysis for variables relevant for the food web and trophic interactions in 
the CAO. Estimate of severity of the knowledge gap: 0 = no knowledge, 1 = serious lack of 
knowledge, 2 = insufficient knowledge, 3 = sufficient knowledge available for the purpose indicated 

in column 2. 

Variable 
Why the variable is necessary 
to evaluate possibilities for 
potential future fisheries 

Estimate of severity 
of the knowledge 

gap 

What data needs to be 
collected to decrease the 
gap? 

Stomach analyses of fish Identification of prey 
ingested by fish 

1 Stomach contents from fish 
in the CAO (year-round) 

Stomach analyses of fish 
predators 

Identification of prey 
ingested by birds and 
mammals 

0 Stomach contents from birds 
and mammals in the CAO 
(year-round) 

Zooplankton and 
sympagic fauna 
abundance 

Estimation of prey biomass 
for Arctic fishes 

1 Samples from the CAO year-
round and covering large 
spatial scales 

Zooplankton and 
sympagic fauna 
population dynamics 

Identification of bottle necks 
of food availability  

1 Gonad development and 
invertebrate size 
measurements from 
preserved samples from the 
CAO 

Zooplankton and 
sympagic fauna migration 
behaviour 

Estimation of prey availability  1 Vertical high-resolution 
sampling of zooplankton and 
sympagic fauna using 
multiple closing nets and 
optical methods  

Hydrography and 
phytoplankton and ice-
algal standing stocks 

Identify driving 
environmental factors for 
zooplankton growth 

2 Salinity, temperature and 
chlorophyll a measurements 
from the water column 

Distribution and 
abundance of birds and 
mammals 

Estimation of predator 
availability 

1 Distribution and abundance 
of birds and mammals in the 
CAO 
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Chapter 6. Fish species/populations and climate change impacts: 
northward migrations  
Hauke Flores (AWI), Fokje L. Schaafsma (WMR), Pauline Snoeijs-Leijonmalm 

(SU) 
 

6.1. Chapter summary 

We identified 130 fish species living in the in the Arctic Ocean. Only 17 of these species 

have been reported from the CAO, but up to 51 Arctic fish species could be able to live in 

the CAO based on their known habitat preferences in adjacent waters. In response to 

ocean warming and sea-ice decline, boreal and temperate fishes along the shelves 

expand their distribution ranges northward, bringing new fishes into the Arctic Ocean. 

Some of these, e.g. herring species and various cod fishes, are of commercial interest. 

This “borealisation” of the fish communities leads to increasing competition with resident 

Arctic species in the Arctic shelf seas, and a shift of the distribution ranges the resident 

Arctic species towards the CAO. The future viability of potential Arctic fish stocks will 

largely depend on the development of primary and secondary productivity in the Arctic 

marine ecosystems. Further sea-ice decline is expected to negatively affect the current 

dominance of Boreogadus in the Arctic Ocean, with potentially disruptive consequences 

for the Arctic ecosystems. Data on the distribution of fishes in the CAO constitutes the 

most eminent knowledge gap. Limited knowledge on Arctic fishes and ecosystems in 

combination with rapid environmental change requires a careful monitoring scheme 

covering multiple trophic levels.  

 

6.2. Background 

During the past decades, the Arctic Ocean has been experiencing a rapid decline in the 

duration and extent of its sea-ice cover and strong ocean warming, progressing from the 

margins towards the CAO. This transformation is predicted to continue in the coming 

decades, resulting in the change from a perennial sea-ice cover to seasonally ice-covered 

Arctic Ocean by the mid-21st century (Meier et al. 2014). These strong changes of the 

physical environment have been causing ecological changes, including changes in 

primary production, phenology and magnitude, in plankton community composition, and 

a decline of sympagic (ice-associated) megafauna (Wassmann 2011, Wassmann et al. 

2011, Barber et al. 2015, van Leeuwe et al. 2018). Along the southern margins of the 

Arctic Ocean, boreal and temperate communities are expanding their distribution ranges 

northwards, ousting resident Arctic communities to the north (Ershova et al. 2015, 

Fossheim et al. 2015, Eriksen et al. 2017). This process has been termed “borealisation”. 

For example, boreal and temperate species, e.g. Ammodytes hexapterus (Pacific sand 

lance) and Gadus morhua (Atlantic cod) have significantly expanded northwards in the 

Barents Sea, and the distribution ranges of polar fishes, e.g. the key forage fish 

Boreogadus, have shifted towards the CAO (Fossheim et al. 2015, Falardeau et al. 2017, 

Ingvaldsen et al. 2017). Dramatic increases in fishery yields in ice-free Arctic shelf seas 

have been projected (Cheung et al. 2010, Hollowed et al. 2013), primarily because 

boreal species replace Arctic species of lower commercial value. Boreogadus and other 

Arctic fishes have so far acted as major carbon transmitters in the food chains, sustaining 

top predators such as seals and polar bears (CAFF 2017), which are also important for 

artisanal hunting. The extent to which such ecosystem functions will be maintained in 

future Arctic food webs is unclear.  

With depths of over 4,000 m, the CAO constitutes a polar deep-sea system with very low 

productivity due to its hitherto perennial sea-ice cover and low nutrient concentrations. 

Hence, the present CAO ecosystem is assumed to have no capacity to support 

harvestable fish stocks. In the future, borealisation will likely extend into the High Seas 
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area of the Arctic Ocean including parts of the CAO. Reduced sea-ice coverage will 

increase light availability and, hence, primary production where sufficient nutrients are 

available. This could potentially lead to the establishment of new harvestable species in 

the Arctic High Seas. This possibility has raised concern that the establishment of an 

unregulated fishery on new resources may add additional pressure on Arctic ecosystems 

in the near future, with potentially detrimental effects on conservation goals and 

ecosystem services (FiSCAO 2017). Currently, there is no scientific basis for a 

sustainable management system due to the limited knowledge on key ecosystem 

parameters, distribution and potential stock sizes of fishes in the CAO and the bordering 

shallow waters of the Arctic High Seas.  

Factors limiting the northward shift of polar fishes and the northward expansion of boreal 

species include primary and secondary productivity, sea-ice coverage, ocean dynamics 

and bottom topography. Since most harvestable species are shelf-associated, the shelf 

slopes constitute a natural boundary to their northward expansion. In large areas of the 

CAO, primary and secondary productivity are unlikely to increase much more in the 21st 

century due to low nutrient concentrations at present and in future projections 

(Vancoppenolle et al. 2013, Tremblay et al. 2015, Tedesco et al. 2019). Future 

projections of productivity, sea-ice coverage, and ocean dynamics are currently 

associated with large uncertainties, complicating predictions about the future viability of 

fish stocks in the CAO (van Leeuwe et al. 2018, Tedesco et al. 2019).  

These uncertainties are currently challenging the development of marine governance and 

resource management regimes in the Arctic High Seas (e.g. Zou & Huntington 2018). 

This chapter reviews the available literature identifying boreal fish species that could 

potentially expand into the CAO. Furthermore, we assess the potential of the future CAO 

to support polar and invading boreal fish stocks. Following a scrutinized procedure to 

review the available literature using various databases, we perform a gap analysis to 

highlight crucial knowledge gaps currently hindering a sound assessment of the future 

potential of the Arctic High Seas to support potentially harvestable fish stocks, and to 

derive future research priorities. 

 

6.3. Summary of literature searches 

We conducted searches in the public research databases Web of Science, Scopus, Google 

Scholar, and Publications.europa.eu. The database queries yielded surprisingly different 

numbers of publications in the two scientific literature databases Web of Science (110 

publications) and Scopus (356 publications) (Table 6.1). The vast majority of 

publications in these two databases were original research articles. However, only ca. 

130 (less than 40 %) of the returned publications were deemed useful for the purpose of 

this chapter. Google Scholar yielded about the same number of hits (108) as the Web of 

Science (110), and there was a large overlap in the results between these two portals. 

Publications.europe.eu yielded the lowest number of hits (85) (Table 6.1). The 

documents returned by this portal were mainly reports directed at marine governance 

and resource management.  

 

6.4. Summary of knowledge 

In May 2019, the ICES/PICES/PAME Working Group (WGICA) listed 91 Arctic and Arctic-

boreal fish species, plus 10 species with a mainly boreal distribution, reported from the 

“wider CAO area”, i.e. including the adjacent shelves surrounding the basins (work in 

progress; Hein Rune Skjoldal, Co-Chair of WGICA, personal communication). “Arctic” in a 

biogeographical sense means species able to live in Arctic water at sub-zero 

temperatures, which may require special physiological adaptations (e.g. anti-freeze 

agents in body fluids) for species that come in contact with sea ice. Of the 101 fishes 

listed by WGICA, 51 species were found present (37 species) or likely to occur (14 
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species) in the CAO and the surrounding slopes. Eelpouts, which are to a large extent 

slope species, are the dominant fish family with 20 species in this area (14 recorded, 6 

likely to occur). Sculpins is the second-largest group with 7 species in the CAO (3 

recorded, 4 likely to occur). Sculpins are predominantly shelf species, and their 

occurrence in the CAO is generally on the upper slope. The third-largest group is 

snailfishes with 6 species (5 recorded, 1 likely to occur). Within the CAO LME (excluding 

the slopes), the corresponding numbers were 14 species recorded and 21 species likely 

to occur (Skjoldal et al. in prep.). In the WGICA list, the number of confirmed fish 

species recorded in the CAO (14) is slightly higher than those reported in a previous 

inventory by FiSCAO (2017), which reported 12 confirmed species for the CAO. 

 
Table 6.1. Results of database research with search terms relevant for fish species/populations 
and climate change impacts, including northward migrations in the CAO. n.a. = not applicable 

Database Search terms 
No of 

publica-
tions 

No of 
original 
Articles 

No of 
reviews 

No of other 
publica-

tions 
Period 

Web of 
Science 

TS=(“Arctic Ocean” AND 
“fish*” AND (“chang*” 
OR “borealisation” OR 
“expans*”)) 

110 91 17 7 1993-2019 

Scopus TITLE-ABS-KEY (“Arctic 
Ocean” AND “fish*” AND 
(“chang*” OR 
“borealisation” OR 
“expans*”)) 

356 301 23 25 1987-2019 

Google 
Scholar 

“fish*” “chang*” 
“borealisation” 
“expans*” “Arctic 
Ocean” 

108 n.a. n.a. 108 2006-2019 

Publications. 
europa.eu 

“fish*” “borealisation” 
“Arctic Ocean” 

85 n.a. n.a. 85 1991-2018 

 
We extended the preliminary WGICA list and account for a total of 130 species that have 

been observed in the Central Arctic Ocean and adjacent waters (Appendix 1). Of these 

130 species, 93 are associated with the shelf or upper slope (0-1,000 m). Among these 

shelf-associated species, 31 are commercially relevant according to www.fishbase.org 

(Appendix 1). This portal reports the “human use” value of fishes based on FAO 

statistics and expert assessments. Clupea harengus (Atlantic herring), Clupea pallasii 

(Pacific herring), Coregonus muksun (muksun), Eleginus gracilis (saffron cod), Gadus 

(Theragra) chalcogrammus, Gadus macrocephalus (Pacific cod), Gadus morhua (Atlantic 

cod), Hippoglossoides platessoides (American plaice), Limanda aspera (yellowfin sole), 

Mallotus villosus (capelin), Melanogrammus aeglefinus (haddock), Oncorhynchus 

gorbuscha, Oncorhynchus keta, Pollachius virens (saithe), Reinhardtius hippoglossoides 

(Greenland halibut), Scomber scombrus (Atlantic mackerel) and Sebastes norvegicus 

(golden redfish) are considered fish of high commercial value (www.fishbase.org). Only 

37 fishes are associated with deeper waters on slopes and in the central basins 

(Appendix 1). Given that reproduction habitats are present and if sufficient food is 

available, these species could potentially expand their distribution ranges northward into 

the CAO. Twelve of these deeper-dwelling species are commercially relevant. However, 

only three of them are considered of high commercial interest (www.fishbase.org): 

Hypoglossoides platessoides (American plaice), Reinhardtius hypoglossoides (Greenland 

halibut) and Sebastes mentella (beaked redfish). 

Applying an approach based on the analysis of species autecology, projected 

environmental change and expert judgement, Hollowed et al. (2013) identified 13 

temperate or boreal taxa of finfish with a potential to expand their distribution into the 

http://www.fishbase.org/
http://www.fishbase.org/
http://www.fishbase.org/
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Arctic Ocean (Appendix 1, in red). Hollowed et al. (2013) noted that certain species, 

such as Atlantic cod, may be subject to range expansion due to their habitat association, 

but that prevailing Arctic conditions will continue to impede the closure of their life cycle, 

e.g. by inhibiting spawning migrations by seasonal sea-ice. This is certainly also true for 

the Atlantic mackerel (a boreal, Atlantic and Meditterranean species) which in spite of its 

wide bathymetric distribution window is not expected to establish populations beyond its 

present distribution.  

Fourteen out of the 130 fish species have a primarily Arctic distribution (Table 6.2). 

Continuing borealisation in combination with ocean warming and sea-ice decline will 

expose these species to increased competition for resources, new predators, thermal 

stress and habitat loss. The result is a northward shift of their distribution ranges, as 

observed by Fossheim et al. (2015). In the future, borealisation can be particularly 

critical for the Arctic species associated with shelf habitats, e.g. Arctogadus (Appendix 

1). The distribution range of Boreogadus extends across the CAO due to the ubiquitous 

presence of juveniles in the under-ice habitat (Melnikov & Chernova 2013, David et al. 

2016). Spawning, however, takes place on the shelves, exposing this species to the 

same threats as Arctogadus. The early life stages of Boreogadus are particularly sensitive 

to temperature rise. Model simulations based on physiological experiments have shown 

that embryonic tolerance ranges linked to climate simulations reveal that increasing CO2 

emissions [Representative Concentration Pathway (RCP) 8.5] will deteriorate the 

suitability of present spawning habitat for both Atlantic cod (Gadus morhua) and Polar 

cod (Boreogadus saida) by 2100 (Dahlke et al. 2018). Moderate warming (RCP4.5) may 

avert dangerous climate impacts on Atlantic cod but still leaves few spawning areas for 

the more vulnerable Polar cod, which also loses the benefits of an ice-covered ocean. 

Emissions following RCP2.6, however, support largely unchanged habitat suitability for 

both species, suggesting that risks are minimized if warming is held “below 2°C, if not 

1.5°C,” as pledged by the Paris Agreement (Dahlke et al. 2018). 

 
Table 6.2. Summary of the distribution and commercial value of the 130 fish species that have 

been observed in the Arctic Ocean (Appendix 1). The number of “commercial” species refers to 
the sum of species with high commercial and commercial value according to www.fishbase.org. 

Distribution 
Number of fish species 

(distribution) 
Number of fish species 

(commercial value) 

Arctic 14 3 

Boreal-Arctic 18 5 

Temperate-Arctic 7 2 

Atlantic-Arctic 30 4 

Pacific-Arctic 15 6 

Boreal 2 0 

Temperate-Boreal 4 2 

Atlantic-Boreal 18 7 

Pacific-Boreal 12 6 

Wider distribution 10 4 

 130 39 

 
Besides being able to accomplish their entire life cycle, fishes expanding or shifting their 

distribution range northward are required to find sufficient food resources in order to 

sustain viable populations. On the shelves, benthic secondary production will increase in 

some regions due to increased pelagic productivity, but it may decline in other regions 

due to reduced bentho-sympagic coupling and the lack of mass downfalls of ice-algae 

due to sea-ice decline (Kedra et al. 2015, Grebmeier et al. 2018). The past polar 

conditions with extensive sea-ice coverage have been favouring large zooplankton and 

sympagic fauna specialized in exploiting ice-algal blooms, and equipped with large lipid 

reserves to survive and reproduce in spite of long periods of food scarcity (e.g. Søreide 

et al. 2010). Immigration of smaller boreal zooplankton species on the shelves due to 

borealisation is expected to replace the large, lipid-rich zooplankton with more numerous 

but smaller, lipid-poor zooplankton (Weydmann et al. 2014, 2018). Where sufficient 

nutrients are available, however, the biomass of herbivorous consumers will increase due 

http://www.fishbase.org/
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to increasing primary production (Ershova et al. 2015, Eriksen et al. 2017). Hence, the 

total fish stock size increase on the shelves and slopes with further climate warming, but 

with a different community composition (Eriksen et al. 2017, Haug et al. 2017).  

In the CAO, predictions of the future primary productivity are associated with great 

uncertainties, but bloom periods of ice algae and phytoplankton will remain short since 

nutrient concentrations are predicted to remain low (van Leeuwe et al. 2018, Tedesco et 

al. 2019). Changes in the extent and phenology of sea ice will disrupt the life-cycles of 

sympagic grazers, especially those not adapted to survive in the water column (Kiko et 

al. 2017). Many abundant grazers depend specifically on ice algae as a carbon source 

(Kohlbach et al. 2016). Emerging mismatches of the timing of ice algal and 

phytoplankton blooms with the reproductive cycles of zooplankton could reduce 

reproductive success of key prey species for planktivorous fishes (Søreide et al. 2010).  

 

6.5. Critical gap analysis 

With no more than 17 confirmed species occurring in the CAO out of 37 species 

potentially living in the CAO below 1,000 m water depth (Appendix 1), the lack of data 

on the fishes in the CAO is the most eminent knowledge gap. There is no reliable 

information about the distribution ranges, migration patterns and population sizes of any 

fish species living in the CAO (see Chapter 4). In particular, the biomass of lanternfishes 

(Myctophidae) and other mesopelagic fishes that dominate the global fish biomass 

(Irigoien et al. 2014) is practically unknown. Without scientifically sound and quantitative 

knowledge about the species composition and population sizes of fishes in the CAO, the 

very foundation of any science-based management of biological resources in the CAO is 

lacking. Filling this knowledge gap, at least regarding the ecologically and economically 

most important species [e.g. Boreogadus, Sebastes norvegicus (golden redfish), 

Reinhardtius hippoglossoides (Greenland halibut)] is urgently needed to establish a 

baseline against which future changes can be assessed. 

To assess the future potential of the CAO to support northward-shifting Arctic fishes and 

immigrating boreal species, reliable projections of primary and secondary productivity in 

the CAO and adjacent waters are essential. Currently, estimates of the future primary 

production in the CAO are associated with large uncertainties (Tremblay et al. 2015, 

Tedesco et al. 2019). Furthermore, the effect of changing sea-ice habitats on the 

composition and productivity of secondary producer communities is difficult to predict. 

The demise of sympagic fauna will negatively affect the capacity of the sea-ice system to 

make carbon available to the pelagic food web during wintertime and other periods of 

food scarcity. Declining taxonomic diversity in high-Arctic ecosystems (Melnikov 2018) 

could cause a decline of functional diversity, reducing resilience to environmental stress. 

Several studies suggest that changes in the physical properties and the phenology of the 

Arctic sea-ice cover will have negative effects on key prey species of Arctic fishes 

(Søreide et al. 2010, Leu et al. 2011, Kohlbach et al. 2016, 2017), but the magnitude 

and spatio-temporal variability of these effects cannot be quantified at the present state 

of knowledge. It is also unclear to which extent a decline of ice-associated secondary 

producers can be compensated by immigrating boreal and Atlantic zooplankton. 

In the shallow parts of the Arctic High Seas, on the shelves of the Chukchi Borderland 

and the East Siberian Sea, borealisation may promote the productivity of commercially 

relevant fish stocks, such as Sebastes mentella (beaked redfish) and Gadus 

macrocephalus (Pacific cod). There is, however, only a limited understanding about the 

future carrying capacity of these ecosystems, as the prey stocks also undergo major 

transformations in terms of species composition, size distribution and secondary 

productivity (Wassmann 2011, Kedra et al. 2015). To assess the future distribution and 

potential stock sizes, more knowledge is needed about the habitat requirements of 

expanding and immigrating fishes regarding the viability of all life stages, and potential 

migration routes between foraging habitats and spawning habitats (Hollowed et al. 

2013). Understanding the ability of Arctic habitats to support resident Arctic fishes and 
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newcomers shifting their distribution ranges in the context of life-history traits will be the 

key to future projections of fish distribution in the Arctic Ocean.  

The rapid borealisation of Arctic fish communities (Hollowed et al. 2013, Fossheim et al. 

2015) could favour the development of new harvestable resources in the eastern parts of 

the Arctic High Seas situated on the shelf (e.g. the Chukchi Plateau). However, the future 

viability of such fish stocks will depend on the development of ecosystem productivity 

and the ability of newcomers to complete their life cycles in their new habitats. The 

ousting of resident Arctic fishes from the shelves brings the risk of local- to regional scale 

extinctions, with potential ramifications on ecosystem functions.  

This review highlights once more the urgent necessity to map the presence and 

distributions of fish communities in the CAO. The CAO covers the largest part of the 

Arctic High Seas, and hence closing this knowledge gap is an essential prerequisite for 

the development of any sustainable management regime for biological resources in this 

region. In the CAO, range expansions are limited to deep-water species, such as 

lanternfishes and redfish (Sebastes spp.). The capacity of the CAO ecosystem to support 

harvestable stock sizes of, for example, redfish in the future is questionable. In addition, 

further sea-ice decline will negatively affect the viability of the present-day dominant 

Boreogadus in the Arctic High Seas, with potentially disruptive consequences for 

ecosystem functioning.  

Besides a broader foundation of data on the distribution, physiological plasticity and life-

cycle biology of fishes in the Arctic Ocean, improved models must incorporate this 

knowledge to develop more accurate predictions of future changes in fish distribution. 

The presently limited knowledge-base on Arctic fishes and ecosystems in combination 

with rapid environmental change warrant a careful monitoring scheme covering multiple 

trophic levels. Only after such comprehensive research, may the establishment of an 

ecosystem-based management regime be successful. 

 
Table 6.3. Critical gap analysis for variables relevant for fish species/populations and climate 

change impacts, including northward migrations in the CAO. Estimate of severity of the knowledge 
gap: 0 = no knowledge, 1 = serious lack of knowledge, 2 = insufficient knowledge, 3 = sufficient 
knowledge available for the purpose indicated in column 2. 

Variable Why the variable is necessary 
to evaluate possibilities for 
potential future fisheries 

Estimate of severity 
of the knowledge 

gap 

What data needs to be 
collected to decrease the 
gap? 

Presence, standing stock 
and population structure 
of fishes in deep basins of 
the CAO 

Standing stock biomass and 
population structure are the 
basis of any science-based 
resource management and 
are necessary to understand 
potential niches becoming 
available to migrant species 

0-1 

Fish abundance and 
distribution in benthic, 
pelagic and cryo-pelagic 
habitats 

Primary and secondary 
productivity 

To estimate the present and 
future carrying capacity of 
the ecosystem as a 
prerequisite for sustainable 
management 

1 

Seasonal and spatial 
variation in primary 
production of ice algae and 
phytoplankton, abundance 
and physiological state of 
zooplankton and sympagic 
fauna 

Distribution, migration 
and life cycles of fishes in 
the CAO 

Life-history data are essential 
to determine recruitment, 
mortality and population 
connectivity in management 
models 

0-1 

Seasonal variability in fish 
distribution and abundance, 
tagging, otolith studies 

Northward expansion of 
species distributions 

Estimate competition effects 
and range shifts 2 

Long-term monitoring of fish 
populations in both the CAO 
and the shelf seas 

 



 Review of the research knowledge and gaps on fish populations, fisheries and linked 

ecosystems in the Central Arctic Ocean (CAO) 

 - 45 - 

 

Chapter 7. Data needs for potential fisheries assessment and fish stock 
modelling  
Joakim Hjelm (SLU), Jonas Hentati Sundberg (SLU) 
 

7.1. Chapter summary 

There is a total lack of basic data on the fish stocks in the High Seas of the CAO and this 

must be tackled by acoustic mapping and scientific surveys of the pelagic food web for a 

period of at least three years, followed by a monitoring program. The amount of new 

data from the CAO should be sufficient and from a large enough area to allow fisheries 

assessment modelling and scenario-building to understand the dynamics of the fish 

stocks in a changing environment. These field and modelling studies provide a basis for 

management recommendations and the development of a future monitoring program, 

e.g. by selecting indicator species, developing bio-indicators and pointing out areas of 

special interest. This could allow the potential development of sustainable, ecosystem-

based fishing levels for CAO fish resources in a data-limited context by (1) modelling of 

indirect effects of fishing on lower trophic levels via trophic cascades using size-spectra, 

stage-specific or other trait-based modelling approaches parameterized with the data 

from the Agreement's Mapping Program, and (2) modelling connectivity between the 

North-East Atlantic and Arctic regions through the possible expansion of habitats of 

species in North-East Atlantic towards Arctic shelves and the CAO due to climate change.  

 

7.2. Background 

There is a total lack of basic data for the fish stocks in the High Seas of the Central Arctic 

Ocean (CAO). This knowledge gap can only be addressed by acoustic mapping and 

scientific surveys of the pelagic food web. Sufficient new data from the CAO and from a 

large enough area are needed to allow fisheries assessment modelling and scenario-

building to understand the dynamics of the fish stocks in a changing environment. These 

field and modelling studies provide a basis for management recommendations and the 

development of a future monitoring program, e.g. by selecting indicator species, 

developing bio-indicators and pointing out areas of special interest. This could allow the 

potential development of sustainable, ecosystem-based fishing levels for CAO fish 

resources in a data-limited context. Here, we first describe the more traditional ways to 

do stock assessment and their data needs. Thereafter we discuss possible ways to use 

indirect ecological effects to potentially assess sustainable fishing levels. 

 

7.3. Summary of literature searches 

We conducted searches in the public research databases Web of Science, Scopus, Google 

Scholar, and Publications.europa.eu. The database queries yielded surprisingly different 

numbers of publications in the two scientific literature databases Web of Science (0 

publications) and Scopus (84 publications) (Table 7.1). Most publications in Scopus were 

original research articles. Google Scholar (70) yielded about the same number of hits as 

Scopus (84). Publications.europe.eu yielded a lower number of hits (50) (Table 7.1). 

The documents returned by this portal were mainly reports directed at marine 

governance and resource management. 
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7.4. Summary of knowledge 

Stock assessment is a modelling tool that provides key information in order to conserve 

and manage commercially exploited fish stocks (Sparre & Venema 1998). Stock 

assessments are traditionally based on models of fish populations that require three 

primary categories of information: catch, indices of biomass and/or abundance and 

biological parameters (Sparre & Venema 1998, Carruthers et al. 2014). 

 
Table 7.1. Results of database research with search terms relevant for potential fisheries 

assessment and fish stock modelling in the CAO. n.a. = not applicable 

Database Search terms 
No of 

publica
-tions 

No of 
original 
Articles 

No of 
reviews 

No of other 
publica-

tions 
Period 

Web of 
Science 

TS=((“Arctic Ocean” AND 
“stock assessment”) OR 
(“Arctic Ocean” AND “stock 
modelling”) OR (“Arctic 
Ocean” AND “fisheries 
assessment”)) 

0 0 0 0 1945-2019 

Scopus TITLE-ABS-KEY ((“Arctic 
Ocean” AND "stock 
assessment”) OR (“Arctic 
Ocean” AND “stock 
modelling”) OR (“Arctic 
Ocean” AND “fisheries 
assessment”)) 

84 80 4 0 2010-2019 

Google 
Scholar 

“Central Arctic Ocean” 
“stock assessment” 

70 n.a. n.a. 70 1992-2019 

Publications. 
europa.eu 

“Arctic Ocean” “stock 
assessment” 

50 n.a. n.a. 50 1995-2019 

 
 

Catch data are usually collected through fisheries monitoring programs and mainly 

consist of information on the landings and discards of a determined species. These data 

are needed to have an indication of the amount of fish that has been removed from the 

system by the fishery in a given year. Indices of abundance and biomass ideally come 

from a statistically-designed, fishery-independent scientific survey of fish species 

throughout their stock’s distribution range. Such surveys collect data using standardized 

gears and sampling methods in order to provide a relative index of biomass or 

abundance over time. Abundance data do not come only from surveys using fishing gears 

but also from eggs, larvae, hydroacoustics and video surveys.  

Biological data can be collected from fishery monitoring programs and fishery-

independent surveys and can include information on size and age distribution, maturity, 

but also on natural mortality, growth, migration rates and species’ diet among the 

others. While simple assessment methods can work with only catch or abundance data, 

in order to move to more complex and reliable models, the collection of biological data is 

of paramount importance. According to Christiansen et al. (2014), almost no fisheries are 

present in the Arctic Ocean today that target “Arctic species” sensu stricto (only 3 out of 

59 targeted species). Only in the case of Boreogadus some limited catch data are 

available for the Barents Sea. This implies that assessment methods that are based on 

past-catch information cannot be applied to most fish classified as Arctic species (see 

Appendix 1). As a consequence, in order to be able to assess the status of the CAO 



 Review of the research knowledge and gaps on fish populations, fisheries and linked 

ecosystems in the Central Arctic Ocean (CAO) 

 - 47 - 

stocks of Arctic species at sea, only abundance and biological data (no catch data) can be 

used.  

Trend- and survey-based modelling is one of such methods and consists in looking at the 

trends in the index of abundance and other stock size indicators to provide reliable 

indications of trends in stock metrics, such as total mortality, recruitment, and biomass. 

The drawback of those methodologies is that they are generally able to provide only 

relative trends in stock size and not absolute values of the size of the assessed 

population (ICES 2012). Some of these models have been, or are still, used to assess the 

status of stocks inhabiting the Arctic area, e.g. Sebastes mentella (beaked redfish) in 

Icelandic waters (Tallman et al. 2016). The survey-based assessment program SURBA 

(ICES 2003, 2004) is an assessment model that allows the estimation of levels of total 

mortality and cohort abundances based only on survey data. This method has been used 

in the past to get information about the stock status of fish stocks managed by ICES 

under the Arctic Fisheries Working Group (AFWG) and is still used to further analyse 

survey trends for the cod stock in the Barents Sea and Norwegian Sea (ICES 2018). 

Another method that will be possible to use in the Arctic could also be the “Daily Egg 

Production Method”, which allows the evaluation of the Spawning Stock Biomass from the 

quantity of eggs present in the sea (Stratoudakis et al. 2006). This method is particularly 

applicable for small pelagic species and has been used to assess the status of numerous 

stocks around the world (Stratoudakis et al. 2006 and references therein). 

Production models are another category of assessment models based on only abundance 

and biological data. The S6 model, based on only length, can be theoretically applied 

when catch data are absent. However, these models need a catch function, which 

includes a possible fishery in the near future. Production models usually pool together 

recruitment, mortality and growth into a single production function and estimate the 

status of the stock in relation to its carrying capacity and important reference points such 

as Maximum Sustainable Yield (MSY). However, those methods require long time series 

of catches or landings and thus are less suited for the Arctic where fisheries have been 

historically scarce. 

Optical technologies have been developed to survey marine species worldwide using non-

destructive methodologies (Letessier et al. 2013, Jamieson 2016). Baited remote 

underwater video (BRUV) surveys can provide biomass estimations and are considered 

cost-effective, simple and accessible to many users (Watson & Huntington 2016). BRUVs 

results have been compared with results from traditional fishing gear methods showing 

high accordance on relative abundance estimates (Brooks et al. 2011, Santana-Garcon et 

al. 2014). This survey method has been used already in the Eastern Canadian Arctic to 

estimate abundance of Greenland shark, filling a major knowledge gap previously 

preventing the assessment and management of this species in this area (Devine et al. 

2018). 

Hydroacoustic surveys are also a powerful tool that can be used to obtain direct 

information on the abundance of a determined species at sea. Each species has a distinct 

acoustic signature that can be recorded by an echosounder. By integrating the strength 

of the acoustic signal of a determined species over the survey area, estimations of the 

total abundance can be obtained. This method is particularly valuable in extreme 

environments, such as the Arctic or the Antarctic, where fishing operations at sea are 

quite challenging. It allows the collection of a large amount of data with a minimum 

impact on the environment. However, it is important to note that not all species produce 

acoustic signals, so that this method might be applicable to only some of the Arctic 

species. This method is considered more reliable for pelagic fish species, while the 

applicability of hydroacoustic methods is less suited for demersal species. Some acoustic 

data coming from Arctic geological surveys of 2014 and 2016 have shown that acoustics 

is probably the most promising method to locate fish in the water column under the ice. 

However, further studies are needed to develop this research area (ICES 2017). The use 

of hydroacoustics to determine fish biomass could also be developed by integrating 
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monitoring with the fishery industry, e.g. the assessment of Peruvian anchoveta where 

the industry delivers calibrated hydroacoustic data to be used in assessments. 

As an alternative to these more traditional assessment methods, there exists more 

ecological-related possibilities to determine changes in stock productivity. These 

alternative ways could allow the potential development of sustainable, ecosystem-based 

fishing levels for CAO fish resources, but in a data-limited context by (1) modelling of 

indirect effects of fishing on lower trophic levels via trophic cascades using size-spectra, 

stage-specific or other trait-based modelling approaches parameterized with the data 

from the Agreement's Mapping Program, and (2) modelling connectivity between the 

North-East Atlantic and Arctic regions through the possible expansion of habitats of 

species in North-East Atlantic towards Arctic shelves and the CAO due to climate change. 

 

7.5. Critical gap analysis 

The lack of basic data for the fish stocks in the High Seas of the CAO is the major gap 

that needs to be filled in order to produce any kind of assessment on the fish stocks 

inhabiting this area.  

 
 
Table 7.2. Critical gap analysis for variables relevant for fisheries assessment and fish stock 
modelling in the CAO. Estimate of severity of the knowledge gap: 0 = no knowledge, 1 = serious 
lack of knowledge, 2 = insufficient knowledge, 3 = sufficient knowledge available for the purpose 
indicated in column 2. 

Variable 
Why the variable is necessary 
to evaluate possibilities for 
potential future fisheries 

Estimate of severity 
of the knowledge 

gap 

What data needs to be collected 
to decrease the gap? 

Biological data on fish in 
the CAO 

Modelling and assessment of 
fish stocks 

1 
(limited data on 

sympagic fish exist) 

Scientific surveys in all areas of 
the CAO, including fish 
population structure (length, 
weight, age) and food-web 
interactions 

Abundance of pelagic fish 
in the CAO 

Modelling and assessment of 
fish stocks 

0 Scientific surveys in all areas of 
the CAO, including number and 
spatial and seasonal distribution 
of fish 

Abundance of benthic fish 
in the CAO 

Modelling and assessment of 
fish stocks 

0 Scientific surveys in all areas of 
the CAO, including number and 
spatial and seasonal distribution 
of fish  
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Chapter 8. Data needs for governance and socio-economic development 
of potential fisheries 
Susa Niiranen (SU), Anne-Sophie Crépin (KVA), Henrik Österblom (SU) 
 

8.1. Chapter summary 

Assessing the sustainability of possible CAO fisheries management requires a holistic 

understanding of the social-ecological system (SES) of the region, including not only 

estimates of future fish stocks, but also understanding of the supply and demand 

conditions for fish, the different economic sectors and actors to be present, as well as the 

governance structures and mechanisms already in place. To ensure the resilience of the 

CAO ecosystem, an advanced understanding is needed of how these different variables of 

interest interact, influence each other and relate to what happens in the rest of the 

world. Only limited CAO specific data is available for the use of potential CAO fisheries 

management, and we identify serious knowledge gaps with regard to fish stock 

abundance and dynamics, infrastructure requirements, interactions with other economic 

activities, environmental change, and global and Arctic drivers, predictions on future 

demand for fish from this region, and institutional capacity to collaborate for managing 

the stock. However, socio-economic and ecological data and research methods from the 

adjacent Arctic shelf seas can, with certain reservations, be applied also to the CAO. 

Furthermore, there are methods available that can allow for informed ecosystem 

management that enables the minimization of systemic risks even with very limited 

access to information and data. 

 

8.2. Background 

From the perspective of fisheries management, the CAO is largely an “unwritten 

chapter”. The recently signed Agreement puts a moratorium on commercial fishing in the 

high seas of the Arctic Ocean until sufficient scientific information is available to enable 

sustainable fishing practices (initially for 16 years). New governance structures, such as 

a more general regional seas convention and management body, a new regional fisheries 

management organization (RFMO) or a specific “Ocean Agreement” under the Arctic 

Council umbrella, have been suggested as possible frameworks to manage potential 

future fishing in the CAO (Baker & Yeager 2015, Landriault 2018, Niiranen et al. 2018). 

This chapter is dedicated to identifying the governance and socio-economic data 

necessary to decide on proper management structures, and possibly carry out 

sustainable fisheries management, in the future CAO - environmental and ecological 

conditions allowing. Following the existing CAO-specific literature and more general 

literature pertaining to sustainable management of marine fish stocks, potential, 

sustainable fisheries management in the CAO would require access to the following 

information and data: 

1.   Size and distribution of fish stocks and their ecosystem interactions. For each relevant species, 

information on current stock sizes/quantities and distribution are necessary, as well as some knowledge 
about how they may change and, which other variables, such as environmental conditions, biotic 
interactions and human activities, are likely to influence the stock sizes in the future. 

2.   Costs and resource needs (production factors) necessary to potentially be able to exploit these 
resources. These include labour, skills, infrastructure, tools, transportation and processing needs, etc., and 
how they are likely to change due to technological changes and changes in availability of production factors. 

3.   Externalities and interactions. Could the production/harvest of some other resources (non-living 
resources in the seafloor, new transport routes, new touristic activities etc.) influence fisheries 
production/harvest? What is the likelihood of externalities affecting production or consumption of the goods 
potentially produced in the CAO? 

4.   State of the demand (local and global) for these resources and how this can be expected to 
change in the future. If demand is low compared to production costs, (potential) commercial production in 
the CAO is unlikely to take place. However, if other sources of food production are likely to become scarcer 
[e.g. decline of agricultural products in some regions due to climate change (Blanchard et al. 2017)], 
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demand for fish, and in particular Arctic fish, is likely to increase together with the profitability of those 
fisheries. 

5.   Existing institutional arrangements. In particular, knowledge of which jurisdiction have the capacity to 
govern the region or influence its future, for example, through the ability to restrict access or steer 
resources management. This will indicate whether the CAO fish resources are more likely to be managed as 
a common pool or open access resource, or under some other type of management institution. 

6.   Identification of regional actors of relevance. Understanding of the countries and indigenous 
communities engaged in resource extraction, as well as the respective companies operating in the region, 
including their size (production volumes, revenues etc), will help to identify different ways to enable 
management and change. This work includes identifying how different countries have ratified treaties, or 
are participating in relevant governance structures, and identification of individual “keystone actors” in the 
industry (Österblom et al. 2015). 

 

8.3. Summary of literature searches 

To review the existing knowledge and data availability on CAO fisheries management and 

governance, Web of Science, EU publications (https://publications.europa.eu/en/home) 

and Google Scholar were searched using a set of relevant keywords/concepts (Table 

8.1). Only a very limited number of scientific publications (Web of Knowledge) were 

found using our search criteria, most of which originate from time period 2016-2019 

indicating that fishing in the CAO has become a topic of scientific interest rather recently. 

The same temporal trend was also visible in the case of EU publications. Many of the 

recent publications discuss the Agreement. Generally, scientists recognize that the 

opening of CAO and managing its natural resources calls for a focus on regional, instead 

of national, policies (Landriault 2018), and there is a need for holistic approaches, where 

the interactions of several sectors and actors are accounted for (Niiranen et al. 2018). No 

scientific publications were found using the search terms “Central Arctic Ocean fisheries 

data”, “CAO fish catch”, and “CAO fisheries value”, illustrating that clearly more 

information is needed on both the CAO fish production potential and the potential socio-

economic benefits of fishing in this region. The increasing physical access to the CAO, on 

the other hand, is addressed in several publications (22 in total). 

 

Table 8.1. Review of existing knowledge and data relevant for potential CAO fisheries governance 
and management. The brackets contain information on the range of publication years. *Excluding 
patents and citations from search. (Search date: 9.8.2019) 

Search terms Web of Science EU publications Google scholar* 

“Central Arctic Ocean”    

    AND “fisheries data” 0 7 (2007-2019) 1 

    AND “fisheries management” 6 (2014-2019) 22 (1999-2019) 444 

    AND “fisheries governance” 1 (2017) 4 (2015-2019) 51 

    AND “fish catch” 0 6 (1996-2018) 50 

    AND “fisheries value” 0 1 (2007) 2 

    AND “access” 9 (1997-2018) 36 (1990-2019) 5620 

    AND “economy” 1 (2016) 33 (1990-2019) 832 

 

8.4. Summary of knowledge 

Even if CAO-specific data and knowledge are generally lacking, due to the region’s 

remoteness and inaccessibility, there is substantial literature describing the 

environmental and socio-economic conditions of Arctic shelf seas that partly may be 

relevant when exploring the potential, sustainable fisheries management in the CAO. For 

example, several existing bio-economic fisheries models calibrated to Arctic conditions 

could support the development of new ones particularly adapted to fit CAO conditions, 

and which could inform several management questions (recent examples include: Diekert 

et al. 2010, Eide et al. 2013, Kvamsdal et al. 2016, Eide 2017a,b, Richter et al. 2018). 

https://publications.europa.eu/en/home
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Similarly, existing Arctic assessments (AMAP, Arctic Council 2016), marine spatial 

planning resources (Edwards & Evans 2017), integrated management methods, tools, or 

approaches (Hoel & Olsen 2012, Crépin et al. 2017a, Niiranen et al 2018) and sets of 

indicators (e.g. Crépin et al. 2014) could perhaps be adapted to focus on the CAO. 

Recent reviews of Arctic fisheries also provide substantial information regarding for 

example the demand and supply side of this economic activity (Troell et al. 2017). 

Behavioural experiments focusing on common pool resources with possible threshold in 

their dynamics could also potentially be adapted to Arctic conditions and provide hints on 

possible collective action outcomes in the CAO (e.g. Schill et al. 2015). Here we assess to 

what extent current literature reveals information about the needs identified in Section 

8.1. 

1.  Size and distribution of fish stocks and their ecosystem interactions: The 

Arctic is one of the few regions in the world where both the primary productivity and 

fish production potential is expected to increase in the future (Blanchard et al. 2017, 

Cabré et al. 2015). According to the latest estimates for sea-ice algae, the foundation 

for biological production higher up in the marine food web, their production can 

increase significantly in the marginal ice zone at high latitudes (> 80 degrees, Tedesco 

et al. 2019). This process could perhaps even extend into certain parts of the CAO, 

but requires the presence of nutrients which are expected to remain low in the CAO 

(Tremblay et al. 2015). Furthermore, many fish species follow their temperature 

niches and move northwards with climate warming (e.g. Frainer et al. 2017). Bio-

economic models developed for the Arctic shelf seas highlight, e.g., the importance of 

accounting for fish (cod) predation on their own young (Wikan & Eide 2004), the role 

of mesh size in shaping the evolutionary dynamics of the cod species (Diekert et al. 

2010), and interactions with aquaculture, and marine reserves (Xuan & Armstrong 

2017). These models may be relevant for the CAO as well, despite its remote position, 

when the sea ice declines further. 

2.  Costs and resource needs: If fish stocks turn out to be sufficiently abundant, 

melting of the summer sea ice may enable fisheries under similar conditions as those 

existing in adjacent Arctic shelf seas. The fleets from these adjacent regions typically 

use different boat sizes and gear types due to different national/institutional 

constraints (Troell et al. 2017). However, the general trend has been toward larger 

and fewer fishing vessels being responsible for most of the catches (Troell et al. 

2017). Given the distance from the shore, large fishing vessels with the capacity to 

process fish catches on board, are likely to be the only competitive alternative for the 

CAO. Yet, they would still need substantial support, such as reliable weather forecasts, 

iceberg predictions, the capacity to navigate in partially ice-covered waters etc., likely 

making the costs of fishing in the CAO relatively high (Gascard et al. 2017). 

3.  Externalities and interactions: Fisheries in the CAO are likely to influence – and be 

influenced by –other economic activities and environmental change. Recent 

publications highlight the existence and potential impacts of such interconnections 

(Figure 8.1) and introduce tools to better understand their implications (Arctic 

Council 2016, Crépin et al. 2017a,b, Edwards & Evans 2017, Niiranen et al. 2018). 

These contributions paint a picture of the potential impacts of complex interactions 

and highlight the systemic risks and opportunities that these interactions entail, 

including the potential for rapid, substantial and persistent change. Examples of 

interactions with fisheries that could be relevant in the CAO include new transport 

routes, pollution from existing and new extraction activities, impacts of global climate 

change, ocean acidification, invasive species, and changes in food-web dynamics 

caused by environmental change (Arctic Council 2016, Crépin et al. 2017a,b, Niiranen 

et al. 2018).  

4.  State of the demand and expected future change: While the local and regional 

demand for Arctic fish is limited due to the small human population numbers in the 

region, there is a substantial global demand for fish products. This demand is likely to 

evolve in response to climate change and its influence on the productive capacity of 

food markets on land in the rest of the world, the status of fish stocks elsewhere in 
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the world, environmental concerns increasing the demand for fish from sustainable 

fisheries, health concerns promoting an increase of fish in standard diets and demands 

for feed for animal production (Troell et al. 2017). 

5.  Institutional arrangements: Management of Arctic fisheries builds on international 

cooperation between the five nations with coasts to the Arctic Ocean [Russian 

Federation, Norway, Greenland (Kingdom of Denmark), Iceland and the USA], and 

also with other nations that may want to access these waters – including traditional 

fishing nations such as Japan and China – and an international group of actors with 

stakes in the region like the EU. Current management of many of the existing Arctic 

stocks builds on international collaboration, in particular bilateral agreements like the 

Russian-Norwegian Barents Sea cod fishery (Eide et al. 2013). Common fish stocks 

risk to be redistributed due to climate change, which may challenge the existing 

collaborations when stocks move from one jurisdiction to another or become available 

to a third actor (Jansen et al. 2016, Pinsky et al. 2018). For example, in response to 

migratory changes in mackerel stocks in 2007, the Faroe Islands ceased to cooperate 

with the EU and Norway when setting quotas. However, Hannesson (2014) suggests 

that quasi-cooperation arrangements between Faeroe Islands and Iceland may have 

contributed to a healthy stock. While the countries did not officially cooperate, they 

set much more cautious unilateral quotas than theory would have predicted under 

non-cooperation. 

6.  An identification of regional actors of relevance: A handful of large fishing 

companies are responsible for fishing the majority of world’s fisheries catch 

(Österblom et al. 2015), and this is likely to have relevance also for the CAO. Methods 

for identifying such “keystone” actors include reviews of company annual reports, 

interviews, company audits and presentations, industry trade data, country- and 

region-specific quota allocations and catch records. Data that can be used are 

collected by e.g. FAO, the Seaaroundus Project and Global Fishing Watch (GFW) 

(Österblom et al. 2015). None of the existing information has ever been compiled with 

a specific focus on the CAO. 

 
 

 

 
 

 
 
 
 
 
 
 

 
 
 
 
 

 

 
 
 
 
 
 
 

 
 
 
 

Figure 8.1. An example of social-ecological interactions of an Arctic ecosystem (Figure from Crépin 
et al. 2017a). 
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8.5. Critical gap analysis 

The gap analysis between the data needed to potentially achieve sustainable stock 

management (Section 8.1), and the actual knowledge (Section 8.3) reveals serious 

lack of both ecological and socio-economic data (Table 8.2). In particular, we identified 

knowledge gaps with regard to fish stock abundance and dynamics, infrastructure 

requirements to cope with potential fishing activities, interactions with other economic 

activities, environmental change, and global and Arctic drivers, predictions on future 

demand for CAO fish, and institutional capacity to collaborate for managing the stocks. In 

some cases, the raw data from individual aspects or analysis are in place, but data 

analysis is needed. However, data from other systems, e.g. from the Arctic shelf seas, 

can be useful when designing potential fisheries management in the CAO. In order to 

ensure sustainable fisheries and ecosystem management in a vulnerable open access 

region, such as the CAO, it is essential to not only have information on the target 

species, but also to account for the potential interactions between fisheries, environment 

and the different economic sectors. Such holistic approach to management is the only 

way to understand what is needed to maintain sufficient resilience, and avoid collapses in 

possible future CAO fisheries, when facing external pressure from climate and resource 

extraction. Policies and management structures should be implemented to safeguard 

potential fisheries as part of a sustainable CAO system. Obtaining enough information to 

be able to put together the essential parts of this puzzle should be a key priority for 

EFICA. 

The lack of data and information hinders a complete assessment of conditions for 

potential, sustainable management of CAO fisheries. However, taking a holistic approach 

– building for example on Arctic Council (2016) and Crépin et al. (2017) – implies that 

informed management can be possible even with very limited access to information and 

data. Such approach can contribute to identifying systemic risk, and thus define 

conservative boundaries for precautious or even safe management, which is likely to be 

the best approach when facing large uncertainties. These limits can be subsequently 

updated when appropriate information becomes available. A holistic approach can also 

help target areas where information and data collection should be prioritized. It can 

immediately inform the potential consequences of some new phenomenon by allowing to 

track its potential impacts throughout the system and identify threats or opportunities for 

sustainable development. 

With this perspective, and based on the gap analysis performed in this chapter, we 

suggest that priority areas for data and research related to governance and socio-

economic development of potential fisheries in the CAO focus on: 

● Assessing the dominant fish species present in the CAO, a rough estimate of their potential stocks, 
distribution and expected food chain dynamics (using EFICA field and modelling data and synthesis 
of existing literature). 

● Assessing possible interactions between potential CAO fisheries and other economic activities, as well 
as with the Arctic environment (using synthesis of existing findings and modelling) 

● Assessing the keystone actors (both states and private sectors) in the CAO (using the methodology 
presented in Österblom et al. 2015). 

● Building a simplified “systems picture” (e.g. Figure 8.1) including important interactions with other 
economic activities and the environment, including local communities to understand which drivers 
affect potential CAO fisheries, directly and indirectly, based on the above assessments (further 
develop and synthesize information gathered in Arctic Council 2016, ACCESS, and other similar 
exercises and adapt them to the CAO). 

● Identifying systemic risk emerging from the “systems picture” through chains of positive feedback 
loops, critical thresholds, accumulating impacts, slow processes, and other factors influencing system 
resilience and sustainability (using, for example, causal loop diagrams, scenario analysis and 
simplified modelling). 

● Assessing the institutional capacity to collaborate around CAO management in relation to potential 
triggers of systemic risk (using causal loop diagrams, scenario analysis, simplified modelling). 

● Use the risk assessment to guide further data collection, modelling exercises and experiments to 
continuously refine the systems picture (synthesis of the activities above).  
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Table 8.2. Critical gap analysis for variables relevant for governance and socio-economic 

development of potential fisheries in the CAO. Estimate of severity of the knowledge gap: 0 = no 
knowledge, 1 = serious lack of knowledge, 2 = insufficient knowledge, 3 = sufficient knowledge 

available for the purpose indicated in column 2. 

Variable Why the variable is necessary 
to evaluate possibilities for 
potential future fisheries 

Estimate of 
severity of the 
knowledge gap 

What data needs to be collected to decrease 
the gap? 

Fish species present, 
stock abundance in 
the CAO 

To estimate the extent of the 
available resource and define 
MSY 

0-1 Fish species present, stock abundance 

Interaction with other 
sectors (including 
externalities) 

To understand possible 
synergies and conflicts with 
other CAO activities, such as 
shipping, tourism and oil/gas 
interests 

1-2 Draw knowledge from examples from other 
regions; Potential use of CAO by multiple 
sectors should be mapped; Spatial modelling 
frameworks and system models from past 
projects (e.g., Arctic ACCESS, Edwards & 
Evans 2017, Crépin et al. 2017a,b) to be 
parameterized with CAO specific data 

Interaction between 
potential fisheries and 
the environment 

Environmental change (e.g., 
climate change, ocean 
acidification, invasive species 
and oil spills) can influence 
reproduction, feeding patterns 
and survival rate of fish 
species. Fish stocks can also 
impact their environment e.g. 
through their feeding 
behaviour. 

1-2 General features of environmental impacts on 
potential fisheries are well studied in other 
ecosystems including adjacent Arctic waters; 
Some of these impacts like oil spills may 
behave very differently in ice-covered waters 
(e.g. Wilkinson et al. 2017); Very little is 
known about the specificity of those impacts 
in the CAO 

Costs of potential 
fishing and resource 
needs (i.e., 
production factors) 

To estimate the potential 
profitability of a CAO fishery 
and the possibility that it would 
or not take place spontaneously 

2 Assessment of technological requirements to 
potentially fish safely in the CAO; Estimation 
of the costs of labour, infrastructure, 
transportation and technology; Required 
technology is not available, costs for technical 
development must be estimated along with 
success chance (see point on technology) 

Access To understand physical limits 
for possible fisheries expansion 
to CAO 

2-3 Improved understanding on ice melt and 
potential shipping routes 

Technology available 
and technical needs 

To understand the fishing 
impact on the environment and 
fish, and to understand 
feasibility and costs of potential 
fishing 

2 Projections on future ice and weather 
conditions; Estimating environmental effects 
of the current technology where relevant for 
the CAO 

Fish price and 
demand 
(current/future, 
local/global) 

To estimate the potential 
profitability of a CAO fishery 
and the possibility that it would 
or would not take place 
spontaneously 

2-3 Data on the price development of key 
commercial fish species available; Some data 
lacking regarding demand that is not 
accounted by the market (e.g. from non-
commercial fisheries and indigenous peoples) 

Current governance 
structures and 
limitations concerning 
the CAO natural 
resource use 

To understand if potential 
fishing can be managed 
sustainably under existing 
mechanisms 

2 Data on formal governance structures needs 
to be synthesized and analyzed where 
relevant for CAO; Data on informal 
governance/management structures need to 
be collected and analyzed 

Potential key actors in 
potential fisheries 

To understand the magnitude 
of potential fishing pressure, 
and to provide information for 
the most effective governance 
measures 

2 Some data on actors is available, i.e., via 
scientific publications (e.g. Österblom et al. 
2015); Analysing International trade data on 
capture fish, and other industry reports 
(including annual reports from companies); 
Data needs to be analysed considering the 
access to CAO specifically; Using Global 
Fishing Watch (GFW) to identify vessels, 
fishing effort, and ownership 

Existing Conventions 
(e.g. UNCLOS) 
relevant for possible 
fishing in the CAO  

To understand the potential 
and limitations set by current 
conventions 

3 Data available, some level of synthesis may 
be needed 
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Chapter 9. Recommendations on research priorities and the next steps  
Pauline Snoeijs-Leijonmalm (SU), Hauke Flores (AWI) 
 

9.1. Chapter summary 

Research priorities comprise the collection and analysis of primary data in the CAO, and – 

to a limited extent – from adjacent waters through collaborations between the 

Signatories of the Agreement. Further research priorities include an evaluation of 

ecosystem vulnerability, social-ecological analyses, i.e., recognizing the close and often 

complex interactions between humans and nature, and recommendations for governance 

of the CAO. Fulfilling the 14 specific research priorities mentioned in this chapter to 

“sufficient knowledge available” would make the application of an Ecosystem Approach to 

Management for the CAO possible.  

 

9.2. Ecosystem Approach to Management 

Unregulated fishing is a global threat to the marine environment, and to the sustainable 

use of marine resources. The EU Common Fisheries Policy (CFP) states that the EU, as a 

large maritime power and as the world’s biggest market for seafood, actively promotes 

better international governance across the world’s seas and oceans to keep them clean, 

safe and secure (https://ec.europa.eu/fisheries/cfp_en). Thus, the EU has a large 

responsibility to further engage in the conservation and possible future sustainable use of 

the fish stocks in the CAO. The CFP is moving towards an Ecosystem Approach to 

Management, which should be adopted as a basis for the future governance of the High 

Seas of the Arctic Ocean. The CAO is a particularly sensitive ecosystem that requires a 

carefully designed approach when moving from the scientific mapping and surveying to 

the potential harvesting of fisheries resources in the future. Major challenges in the case 

of the CAO are: (1) the general lack of data on the CAO fish stocks and their role in the 

Arctic food webs, (2) constraints for scientific cooperation, including data and scientific 

sample exchange, between countries, and (3) the cumulative effect of environmental, 

biotic and human stressors in an era of rapid climate warming.  

The general approach of the CFP is to lay down rules ensuring that fisheries are 

sustainable (“Maximum Sustainable Yield”, MSY) and do not damage the marine 

environment (“Good Environmental Status”). However, such analyses are not possible 

today for the CAO due to largely unknown fish stocks and ecosystem status. When the 

impact of fishing on the marine environment is not fully understood, the CFP adopts a 

precautionary approach, which recognises the impact of human activity on all 

components of the ecosystem. This is also the approach taken in the Agreement. Since 

we currently do not have appropriate and reliable sentinels for ecosystem health in the 

CAO, data should be collected for a future Ecosystem Approach to Management in the 

CAO. For this we need to (1) describe the ecoregion (an ecologically and geographically 

defined area), identify the impacts of pressures and drivers on key ecosystem 

components by collecting new basic ecological data on the CAO fishes, including 

environmental and food-web interactions, (2) define MSY options and reference points on 

fish biomass changes in productivity by stock assessment, using the new data in 

modelling, (3) collect and analyse relevant socioeconomic data that enables us to 

summarize the possible future fleet activity impacts on fishes and species trade-offs 

between fleets (Figure 9.1). 

MSY focuses only on the renewal capacity of the stock and does not consider any costs 

associated with harvesting, food web interactions or environmental change. A more 

holistic approach picturing the CAO as a SES where socio-economic activities are tightly 

interlinked with the geophysical environment and ecosystem dynamics would provide 

better tools to identify critical risks, leverage points for change and indicators of the 
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three dimensions of sustainability (social, economic and environmental). Such 

approaches have been implemented for the whole Arctic Ocean in Arctic Council (2016), 

Crépin et al. (2017) and Niiranen et al. (2018), and could be further adapted to the 

specific conditions of the CAO using existing data and results from the planned EFICA 

expeditions. 

 
 
 
 
 
 
 

 
 
 
 

 
 
 

 
 
 
 
 
 

Figure 9.1. The three main inputs to support an Ecosystem Approach to Management. Figure from 
ICES (www.ices.dk) 

 

9.3. Holistic gap analysis 

The critical gap analysis tables in Chapters 2-8 are summarized in Figure 9.2, using a 

set-up covering the whole CAO ecosystem. This figure highlights that the knowledge 

gaps for the CAO are enormous and obstruct any quantitative analyses of its fish stocks. 

This agrees with the conclusions from the Fifth FiSCAO Report (FiSCAO 2018). While data 

for the physical environment in the CAO (oceanography, bottom topography and ice-

cover dynamics) would be sufficient for fish stock modelling and assessment, there is a 

massive lack of biological and ecological data. The CAO is not a closed system and some 

aspects of the shelf seas are of high relevance for the CAO, notably connectivity of fish 

stocks and fish species moving north with climate warming. Scientific research and 

monitoring programs are established in the shelf seas, and new data are constantly being 

produced.  

Fish stock data are available from scientific projects and monitoring programs for some 

of the shelf seas (Barents Sea, Bering Sea, and to a lesser extent for the Beaufort Sea 

and the Chukchi Sea). Data exist also for the Russian shelf Seas (Kara Sea, Laptev Sea, 

East Siberian Sea), but these data are not internationally available, while for the areas 

north of Canada/Greenland data are missing; they do not exist because of the severe ice 

conditions there. More data from all shelf seas may be hidden in reports that are not 

publicly accessible. We recommend to make current knowledge generally available by 

translating key publications and identification of valuable data reports. 

 

http://www.ices.dk/
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Figure 9.2. Radar chart summarizing the gap analyses presented in this Report (Tables 2.3, 3.2, 

4.3, 5.3, 6.2, 7.2, 8.2). On the axis the estimates of the severity of the knowledge gaps are 
given: 0 = no knowledge, 1 = serious lack of knowledge, 2 = insufficient knowledge, 3 = sufficient 
knowledge available. The larger the blue area is in the direction of a specific subject, the smaller 

the relative knowledge gap on this subject. 

 

 

Figure 9.3. Set-up of a vulnerability analysis by ICES that could be used as a model for further 
work within EFICA. This figure is taken from the ICES Ecosystem Overviews - Baltic Sea Ecoregion, 
Version 2 (21 January 2019). Please, note that the Baltic Sea is one of the World´s best studied 
marine areas. whereas for the CAO and High Seas area information is sparse. See also: 
http://www.ices.dk/community/advisory-process/Pages/Ecosystem-overviews.aspx 

http://www.ices.dk/community/advisory-process/Pages/Ecosystem-overviews.aspx
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9.4. Recommendations on research priorities 

Research priorities comprise the collection and analysis of primary data in the CAO and – 

to a limited extent (genetic samples) – also from adjacent waters (Table 9.1, Items 1-7, 

10), evaluation of ecosystem vulnerability, social-ecological system analyses that 

combine the ecological and socio-economic knowledge, and recommendations for 

governance of the CAO (Table 9.1, Items 8-9, 11-14). Fulfilling the 14 specific research 

priorities to “sufficient knowledge available” could make the potential, future application 

of an Ecosystem Approach to Management possible for the CAO as well as a more holistic 

approach to potential management that takes into account social, economic and 

environmental dimensions of sustainability. 

 

Some of these research priorities can complement each other to improve system 

knowledge. For example, priorities 1, 2, 3 and 6 all relate to ecosystem dynamics and 

are all needed to improve knowledge of the dynamics of the marine ecosystem in the 

CAO, which can inform about priority 5 on ecosystem productivity. These ecosystem 

dynamics are then influenced by 4 and 7, which are also necessary to understand 

possible trends in future ecosystem productivity. Vulnerability analysis (priority 8) builds 

on ecosystem data (1-7). Although some desktop product can be created from existing 

literature, data and from studies related to areas nearby the CAO (e.g. priorities 10-12), 

strategically targeted information gathering could have the potential to substantially 

decrease the ranges of uncertainties associated with this type of assessment. 

Vulnerability analysis should also take into account pressures from existing and potential 

socio-economic activities (13) and governance (9, 14), which could exercise as much 

influence on the outcome as the natural dynamics.  
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Table 9.1. Summary of research priorities (not in any specific order of importance) relevant for 
the potential, future application of an Ecosystem Approach to Management for the CAO. Estimate 

of severity of the knowledge gap: 0 = no knowledge, 1 = serious lack of knowledge, 2 = 
insufficient knowledge, 3 = sufficient knowledge available for the purpose indicated in column 2. 
MSY = Maximum Sustainable Yield. 

Nr Variable 

Why the variable is 

necessary to evaluate 
possibilities for 
potential future 
fisheries 

Estimate of severity of the 
knowledge gap today 

Necessary data collection 

Data from the CAO 

1 Sympagic fish  
Species, density, biomass, 
demography, life-history 
strategies in different sub-
areas, seasons and years 
 

Model and assess 
existing fish stocks in 
the CAO, define MSY 
 

0-1 
Four papers, in summer 
juvenile Boreogadus 
Two papers, in winter both 
Boreogadus and 
Arctogadus (very few 
quantitative data) 

Icebreaker expeditions 
Acoustics 
Deep-sea cameras 
Scientific samples 

2 Pelagic fish  
Species, density, biomass, 
demography, life-history 
strategies in different sub-
areas, seasons and years 
 

Model and assess 
existing fish stocks in 
the CAO, define MSY 
 

0-1 
One paper (manuscript), 
species not identified 

Icebreaker expeditions 
Acoustics 
Deep-sea cameras 
Scientific samples  

3 Benthic fish  
Species, density, biomass, 
demography, life-history 
strategies in different sub-
areas, seasons and years 
 

Model and assess 
existing fish stocks in 
the CAO, define MSY 
 

0-1 
Single observations, no 
systematic study. Non-
commercial species 
(eelpouts, sculpins), but 
also perhaps commercial 
Greenland halibut, 
Reinhardtius 
hippoglossoides 

Icebreaker expeditions 
Deep-sea cameras 
Scientific samples  
 
 

4 Environmental variables  
Ice cover, temperature, 
salinity, nutrients, water 
currents, bottom topography 
in different sub-areas, 
seasons and years 
 

Extend the results 
obtained in 1-3 to a 
larger area by 
modelling 
 

2-3 
Good oceanographic and 
bottom topography data 
are available from RV 
Oden and RV Polarstern, 
but not for all CAO sub-
areas and seasons 

Icebreaker expeditions 
Measure while fish surveys 
are carried out 
 
Satellite data 
Ice cover 
 

5 Ecosystem productivity  
Primary, secondary and 
tertiary production in 
different sub-areas, seasons 
and years 
 

Understand and predict 
the MSY the CAO 
ecosystem could 
produce 

2 
There are primary 
productivity papers and 
also zooplankton biomass 
studies – a good summary 
of this has been made by 
the WGICA group 

Icebreaker expeditions 
Measure while fish surveys 
are carried out 

6 Food-web interactions 
Stomach analyses, stable 
isotope analyses, fatty acids 
 

Model and understand 
how the existing fish 
stocks depend on biotic 
interactions 

1 
There are some papers on 
the biodiversity of food 
items (sympagic 
amphipods, zooplankton) 
and predators (seals, 
beluga whales, narwhals), 
but practically nothing 
about food-web 
interactions 

Icebreaker expeditions 
Measure while fish surveys 
are carried out 

7 Climate warming impacts 
Effects of increased water 
temperature on ocean 
circulation and organisms. 
Compare areas with and 
without ice cover in the CAO 
(summer). Study the effects 
of melting of glaciers and 
the sea ice (freshwater input 
into the CAO). Ocean 
acidification 
 

To model and 
understand how the 
existing fish stocks 
may change in the 
near future as a result 
of changes in the 
physical, chemical and 
biotic environment with 
climate warming 
 

1-2 
On the physical side there 
are a lot of papers, e.g. 
changes in ice cover and 
ocean circulation, but 
practically nothing on 
organisms 

Icebreaker expeditions 
Measure while fish surveys 
are carried out 
 
Satellite data 
Ice cover 
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8 Vulnerability analysis 
(cf. Figure 9.3) 

Evaluation of fish 
stocks in relation to 
other pressures to 
decide which 
conservation measures 
are necessary and if 
any sustainable 
fisheries could be 
allowed  

0 
No papers found (fish 
stocks unknown) 

Desk studies 
Data for 1-7 is necessary 
Literature studies of other 
pressures 

9 Evaluation of governance 
structures  

To decide how the CAO 
ecosystem could be 
managed 

2 
In the past years a 
number of papers in this 
field have been published 
about the High Seas / CAO 
in the fields of law, 
management, etc. 

Desk studies 
Data for 1-8 is necessary 
Literature studies of other 
pressures  
Literature studies of socio-
economy, political 
agreements, etc. (cf. Table 
8.2) 

Data from the Arctic shelf seas  

10 Genetic fish studies of 
relevance for the CAO 
 

Fish stock health and 
survival 

1 
Some studies exist on 
Boreogadus and 
Arctogadus but not from 
the CAO 

Pan-Arctic scientific 
cooperation:  
Assess connectivity of 
populations, identify 
spawning areas of 
different populations 
All shelf seas and the CAO, 
integrate genetic methods 
between countries 

11 Ecological fish studies of 
relevance for the CAO 

To assess connectivity 
of populations and to 
identify which fish 
species are moving 
northward with climate 
change - towards the 
CAO? 

2-3 
Many research papers and 
reports (Barents Sea, 
Chukchi Sea, Beaufort 
Sea) 

Desk studies 
Ecological linkages 
between potentially 
harvestable fish stocks of 
the CAO and the shelf seas 
(but first it is necessary to 
know which fish we have 
in the CAO) 

12 Ecosystem change 
(physical, chemical, biotic) 
of relevance for the CAO 

To assess the 
ecological effects of 
climate warming and 
ocean acidification 

2-3 
Oceanographic, 
productivity and food-web 
data exist  

Desk studies 
Some of this knowledge 
could be extrapolated to 
the CAO but most of the 
CAO (deep nutrient-poor 
basins) is very different 
from the shelf seas 
(coastal, partly nutrient-
rich) 
 

13 Pressures of relevance for 
the CAO 

Human activities, 
including long-distance 
pollution, spatial 
extension (i.e., 
northwards movement) 
of different economic 
sectors and key actors, 

1-2 Desk studies 

14 Governance of relevance 
for the CAO 

Governance is under 
national jurisdiction 

2 Desk studies 
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Appendix 1. Fish species found in the Central Arctic Ocean and adjacent waters, with data on 

depth range, global distribution and human use. The data portal www.fishbase.org was used to 
acquire more detailed knowledge on fish distribution and ecology. * = value modified according to 

newer literature. The 13 temperate or boreal taxa of commercially harvested finfish with a 
potential to expand their distribution into the Arctic Ocean according to Hollowed et al. (2013) are 
indicated in red and the 17 species recorded in the CAO are indicated by a green background. 

# Species Depth range 
(fishbase.org) 

Distribution  
(fishbase.org) 

Human use 
(fishbase.org) 

Reported presence 
in the Arctic Ocean 

Source 

1 Acantholumpenu
s mackayi 

0-200 m Atlantic-Arctic None   Andriyashev & 
Chernova (1996), 
Mecklenburg et al. 
(2011, 2018) 

2 Alepocephalus 
agassizii  
(Agassiz' 
slickhead) 

600-2500 m  Atlantic-
Boreal 

Potentially 
commercial 

Baffin Bay Jørgensen et al. 
(2005) 

3 Amblyraja 
hyperborea  
(Arctic skate) 

300-1500 m Boreal-Arctic None CAO, Canada Basin, 
Baffin Bay, Barents 
Sea, Beaufort Sea, 
Greenland Sea, 
Hudson Bay, Kara 
Sea, Laptev Sea, 
Norwegian Sea, 
Siberian Sea 

Mecklenburg et al. 
(2002), Stein et al. 
(2005), 
Lynghammar et al. 
(2013) 

4 Amblyraja 
radiata (starry 
ray) 

25-440 m Atlantic-Arctic Low 
commercial 
interest 

CAO, Canada Basin, 
Baffin Bay, Barents 
Sea, Greenland Sea 
and coast, Hudson 
Bay, Norwegian Sea, 
White Sea 

Lynghammar et al. 
(2013) 

5 Ammodytes 
hexapterus  
(Pacific sand 
lance) 

0-275 Pacific-Arctic Commercial Bering Sea, Chukchi 
Sea, Canadian Arctic 
Archipelago, 
Beaufort Sea 

Suzuki et al. 
(2015), Kono et al. 
(2016), Falardeau 
et al. (2017) 

6 Anarhichas 
denticulatus 

60-1700 m Atlantic-Arctic Recreational 
fishing 

  Andriyashev & 
Chernova (1996), 
Mecklenburg et al. 
(2011, 2018) 

7 Anarhichas 
orientalis 

0-100 m  Pacific-Arctic None Chukchi Sea, 
Beaufort Sea 

Mecklenburg et al. 
(2011) 

8 Anisarchus 
medius (stout 
eelblenny) 

10-300 Boreal None  CAO FiSCAO (2017), 
Andriyashev & 
Chernova (1996), 
Mecklenburg et al. 
(2011, 2018)  

9 Arctogadus 

glacialis 

0-1000 m Arctic Low 

commercial 
interest 

 CAO FiSCAO (2017), 

Mecklenburg et al. 
(2011), see Table 
4.2 

10 Artediellus 
atlanticus  
(Atlantic 
hookear) 

35-900 m Atlantic-Arctic No data CAO, Siberian Sea, 
Chukchi Sea, Kara 
Sea, Laptev Sea, 
Beaufort Sea, Baffin 
Bay 

FiSCAO (2017), 
Mecklenburg et al. 
(2011) 

11 Artediellus 
scaber 

0-290 m Boreal-Arctic No data Barents Sea, 
Siberian and 
American coastal 
seas 

Mecklenburg et al. 
(2011), Rand & 
Logerwell (2011) 

12 Aspidophoroides 
olrikii 

7-520 m Boreal-Arctic No data Wide distribution, 
Beaufort Sea 

Mecklenburg et al. 
(2011), Rand & 
Logerwell (2011), 
Suzuki et al. 
(2015) 
 

http://www.fishbase.org/


 Review of the research knowledge and gaps on fish populations, fisheries and linked 

ecosystems in the Central Arctic Ocean (CAO) 

 - 74 - 

13 Bathylagus 
euryops (goiter 
blacksmelt) 

500-3237 m  Atlantic-
Boreal 

None Baffin Bay Jørgensen et al. 
(2005), Møller et 
al. (2010) 

14 Bathyraja 
spinicauda  
(spinetail ray) 

140-1463 m Atlantic-Arctic None Barents Sea, Hudson 
Bay, Norwegian Sea 

Mecklenburg et al. 
(2011), 
Lynghammar et al. 
(2013) 

15 Benthosoma 
glaciale (glacier 

lanternfish) 

0-1407 m Wide 
(Atlantic-

tropical-
Arctic) 

Potentially 
commercial 

Kara Sea, Baffin 
Bay, Coast of 

Spitsbergen 

References in  
Mecklenburg et al. 

(2011) 

16 Blepsias bilobus 0-250 m  Pacific-Boreal Recreational 
fishing 

Bering Sea, Chukchi 
Sea 

Mecklenburg et al. 
(2011) 

17 Boreogadus 
saida (Polar cod) 

0-4000 m* Arctic Low 
commercial 
interest * 

CAO, Circumpolar FiSCAO (2017), 
David et al. 
(2016), see Table 
4.2 

18 Bythites fuscus 
(Arctic brotula) 

?-526 m Atlantic-
Boreal 

None   Andriyashev & 
Chernova (1996), 
Mecklenburg et al. 
(2011, 2018) 

19 Careproctus 
micropus 

100-1800 m Arctic No data Continental slopes Mecklenburg et al. 
(2011) 

20 Careproctus 
reinhardti  
(sea tadpole) 

75-1750 m Atlantic-Arctic None CAO, Continental 
slopes 

FiSCAO (2017), 
Mecklenburg et al. 
(2011) 

21 Centroscymnus 
coelolepis 

150-3700 m Wide 
(tropical-

Boreal) 

Low 
commercial 

interest 

Baffin Bay Møller et al. (2010) 

22 Centroscymnus 
coelolepis 
(Portugese 
dogfish) 

400-2000 m Cosmopolitan Low 
commercial 
interest 

Baffin Bay Lynghammar et al. 
(2013) 

23 Cetorhinus 
maximus 
(basking shark) 

0-2000 m Cosmopolitan Commercial White Sea, Barents 
Sea, Norwegian Sea, 
Greenland coast 

Mecklenburg et al. 
(2011), 
Lynghammar et al. 
(2013) 

24 Clupea harengus 
(Atlantic herring) 

0-364 m Temperate-
Boreal 

Highly 
commercial 

Barents Sea Hollowed et al. 
(2013) 

25 Clupea pallasii 
ssp. pallasii 
(Pacific herring) 

0-475 m Temperate-
Boreal 

Highly 
commercial 

Bering Sea, Chukchi 
Sea 

Mecklenburg et al. 
(2011), Kono et al. 
(2016) 

26 Coregonus 
autumnalis  
(Arctic cisco) 

Coastal Arctic Commercial   Andriyashev & 
Chernova (1996), 
Mecklenburg et al. 
(2011, 2018) 

27 Coregonus 
laurettae (Bering 

cisco) 

Coastal Pacific-Arctic Subsistence 
fisheries 

  Andriyashev & 
Chernova (1996), 

Mecklenburg et al. 
(2011, 2018) 

28 Coregonus 
muksun 
(muksun) 

Coastal Arctic Highly 
commercial 

  
 

Andriyashev & 
Chernova (1996), 
Mecklenburg et al. 
(2011, 2018) 

29 Coregonus nasus 
(broad whitefish) 

Coastal Pacific-Arctic Commercial   Andriyashev & 
Chernova (1996), 
Mecklenburg et al. 
(2011, 2018) 
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30 Coregonus 
pidschian 
(humpback 
whitefish) 
 

Coastal Boreal-Arctic Commercial   Andriyashev & 
Chernova (1996), 
Mecklenburg et al. 
(2011, 2018) 

31 Coregonus 
sardinella 
(sardine cisco) 

Coastal Arctic Commercial   Andriyashev & 
Chernova (1996), 
Mecklenburg et al. 
(2011, 2018) 

32 Coryphaenoides 
rupestris  

(roundnose 
grenadier) 

180-2600 Atlantic-
Boreal 

Commercial Baffin Bay Jørgensen et al. 
(2005) 

33 Cottunculus 
microps (polar 
sculpin) 

165-1342 m Atlantic-
Boreal 

None CAO, Chukchi Sea FiSCAO (2017), 
Mecklenburg et al. 
(2011) 

34 Cyclopteropsis 
mcalpini  
(Arctic 
lumpsucker) 

174-? m Boreal-Arctic No data 
 

Andriyashev & 
Chernova (1996), 
Mecklenburg et al. 
(2011) 

35 Eleginus gracilis 
(saffron cod) 

0-300 m Pacific-Boreal Highly 
commercial 

Alaska coast, Bering 
Sea, Chukchi Sea 

Norcross et al. 
(2010), Kono et al. 
(2016) 

36 Eleginus nawaga Coastal? Boreal-Arctic Commercial   Andriyashev & 
Chernova (1996), 
Mecklenburg et al. 
(2011, 2018) 

37 Entelurus 
aequoreus 
(Atlantic snake 
pipefish) 

5-100 m Atlantic-Arctic None Greenland Sea, 
coast of Svalbard, 
Barents Sea 

Fleischer et al. 
(2007), references 
in Mecklenburg et 
al. (2011) 

38 Eumesogrammus 
praecisus 

(fourline 
snakeblenny) 

5-400 m Boreal-Arctic None  Beaufort Sea Andriyashev & 
Chernova (1996), 

Mecklenburg et al. 
(2011, 2018) 

39 Eumicrotremus 
&riashevi 
(pimpeled 
lumpsucker) 

20-83 m Pacific-Boreal No data Bering Sea, Chukchi 
Sea 

Mecklenburg et al. 
(2011) 

40 Eumicrotremus 
derjugini  
(leatherfin 
lumpsucker) 

50-930 m Arctic No data Wide distribution Mecklenburg et al. 
(2011), Rand & 
Logerwell (2011) 

41 Eumicrotremus 
spinosus 
(Atlantic spiny 
lumpsucker) 

30-400 m Temperate-
Arctic 

No data Canadian Arctic 
Archipelago, 
northern Greenland, 
Kara Sea 

Mecklenburg et al. 
(2011) 

42 Gadus 
(Theragra) 
chalcogrammus 

30-400 m  Pacific-Boreal Highly 
commercial 

Beaufort Sea Logerwell et al. 
(2011), 
Mecklenburg et al. 
(2011) 

43 Gadus 
macrocephalus 
(Pacific cod) 

100-400 m Pacific-Boreal Highly 
commercial 

White Sea, Bering 
Sea, Chukchi Sea, 
coastal Arctic Areas, 
Beaufort Sea 

Mecklenburg et al. 
(2011), Kono et al. 
(2016) 

44 Gadus morhua 
(Atlantic cod) 

0-600 m Atlantic-
Boreal 

Highly 
commercial 

Northern Fram Strait Ingvaldsen et al. 
(2017) 
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45 Gaidropsarus 
argentatus  
(Arctic rockling) 

150-2260 m Atlantic-Arctic Commercial Barents Sea, Baffin 
Bay 

Mecklenburg et al. 
(2011) 

46 Gaidropsarus 
ensis (threadfin 
rockling) 

0-2000 m  Atlantic-
Boreal 

None Barents Sea, Baffin 
Bay 

Mecklenburg et al. 
(2011) 

47 Gymnelus 
hemifasciatus 

(halfbarred pout) 

9-175 m Arctic None Bering Sea Mecklenburg et al. 
(2011) 

48 Gymnelus 
retrodorsalis  
(Aurora unernak) 

8-418 m Atlantic-Arctic None   Mecklenburg et al. 
(2011) 

49 Gymnelus viridis 
(fish doctor) 

0-320 m Pacific-Arctic None  Beaufort Sea Mecklenburg et al. 
(2011), Rand & 
Logerwell (2011) 

50 Gymnocanthus 
tricuspis  
(Arctic staghorn 
sculpin) 

0-451 m Temperate-
Arctic 

No data Circumpolar Mecklenburg et al. 
(2011), Rand & 
Logerwell (2011), 
Suzuki et al. 
(2015) 

51 Gymnocathus 
tricuspis 

0-451 m  Atlantic-Arctic None Bering Sea, Chukchi 
Sea 

Kono et al. (2016) 

52 Hippoglossoides 
platessoides 
(American plaice) 

10-3000 m  Atlantic-
Boreal 

Highly 
commercial 

  Mecklenburg et al. 
(2011) 

53 Hippoglossoides 
robustus 
(flathead sole) 

0-1050 Pacific-Arctic Commercial Beaufort Sea, Bering 
Sea, Chukchi Sea 

Rand & Logerwell 
(2011), 
Mecklenburg et al. 
(2011), Kono et al. 
(2016) 

54 Hypomesus 
olidus 

Coastal Boreal-Arctic Commercial   Andriyashev & 
Chernova (1996), 
Mecklenburg et al. 
(2011, 2018) 

55 Icelus bicornis 
(twohorn sculpin) 

0-930 m Temperate-
Arctic 

No data Circumpolar Mecklenburg et al. 
(2011) 
 

56 Icelus spatula 
(spatulate 
sculpin) 

12-930 m ( Boreal-Arctic No data Circumpolar Mecklenburg et al. 
(2011), Rand & 
Logerwell (2011) 

57 Lamna nasus 
(porbeagle) 

0-715 m Cosmopolitan Commercial Barents Sea, 
Norwegian Sea, 
Greenland coast 

Lynghammar et al. 
(2013) 

58 Leptagonus 
decagonus  
(Atlantic 
poacher) 

0-930 m Atlantic-Arctic No data Wide distribution Mecklenburg et al. 
(2011) 

59 Leptoclinus 
maculatus  
(daubed shanny) 

2-607 m Temperate-
Arctic 

None  Beaufort Sea Andriyashev & 
Chernova (1996), 
Mecklenburg et al. 
(2011, 2018) 

60 Lethenteron 
camtschaticum 

0-50 m Pacific-Boreal Commercial Arctic (unspecified) Mecklenburg et al. 
(2011), 
Lynghammar et al. 
(2013) 

61 Limanda aspera 
(yellowfin sole) 

0-700 m Pacific-Arctic Highly 
commercial 

Bering Sea, Chukchi 
Sea 

Mecklenburg et al. 
(2011), Yeung & 
Yang (2014), Kono 
et al. (2016) 
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62 Limanda 
proboscidea 
(longhead dab) 

0-160 m Pacific-Arctic No data   Mecklenburg et al. 
(2011) 

63 Limanda 
sakhalinensis 
(sakhalin sole) 

10-360 Pacific-Boreal Low 
commercial 
interest 

  Mecklenburg et al. 
(2011) 

64 Liopsetta 
glacialis 

0-90 m Boreal-Arctic Low 
commercial 

interest 

  Andriyashev & 
Chernova (1996), 

Mecklenburg et al. 
(2011, 2018) 

65 Liparis 
bathyarcticus 
(nebulous 
snailfish) 

400-647 m Pacific-Arctic None Circumpolar, slope 
and shelves 

Mecklenburg et al. 
(2011) 

66 Liparis fabricii 
(gelatinous 
snailfish) 

12-1800 m Atlantic-Arctic None CAO, Circumpolar, 
slope and shelves, 
Beaufort Sea 

FiSCAO (2017), 
Mecklenburg et al. 
(2011), Rand & 
Logerwell (2011), 
Suzuki et al. 
(2015) 

67 Liparis gibbus 
(variegated 
snailfish) 

0-647 m Boreal-Arctic None Circumpolar, slope 
and shelves, 
Beaufort Sea 

Mecklenburg et al. 
(2011), Suzuki et 
al. (2015) 

68 Liparis tunicatus 
(kelp snailfish) 

0-620 m Boreal-Arctic None Circumpolar, slope 
and shelves 

Mecklenburg et al. 
(2011) 

69 Lumpenus fabricii 
(slender 
eelblenny) 

0-235 m  Boreal-Arctic None  Beaufort Sea Andriyashev & 
Chernova (1996), 
Mecklenburg et al. 

(2011, 2018) 

70 Lycenchelys 
kolthoffi 

202-930 m Atlantic-Arctic None   Mecklenburg et al. 
(2011) 

71 Lycenchelys 
muraena 

350-1700 m Arctic None   Mecklenburg et al. 
(2011) 

72 Lycenchelys 
platyrhina  

?-1848 m Arctic None   Mecklenburg et al. 
(2011) 

73 Lycodes adolfi 
(Adolf's eelpout) 

1371-1880 m Atlantic-
Boreal 

None CAO, Svalbard slope FiSCAO (2017), 
Byrkjedal et al. 
(2011), 
Mecklenburg et al. 
(2011) 

74 Lycodes esmarkii 
(greater eelpout) 

251-1090 m Atlantic-
Boreal 

None   Mecklenburg et al. 
(2011) 

75 Lycodes 
eudipleurostictus 
(doubleline 
eelpout) 

25-1187 m Arctic None   Mecklenburg et al. 
(2011) 

76 Lycodes frigidus 475-3000 m  Atlantic-Arctic None CAO, Canada Basin  Stein et al. (2005), 
Mecklenburg et al. 
(2011) 

77 Lycodes gracilis 94-113 m Atlantic-
Boreal 

None   Mecklenburg et al. 
(2011) 

78 Lycodes 
jugoricus 
(shulupaoluk) 

9-90 m Arctic None   Mecklenburg et al. 
(2011) 
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79 Lycodes luetkenii 
(Lütken's 
Eelpout) 

849-1436 m Atlantic-Arctic None   Mecklenburg et al. 
(2011) 

80 Lycodes 
marisalbi (White 
Sea eelpout) 

91-335 m Atlantic-Arctic None   Mecklenburg et al. 
(2011) 

81 Lycodes mucosus 
(saddled eelpout) 

5-825 m  Pacific-Arctic None  Beaufort Sea Rand & Logerwell 
(2011), 

Mecklenburg et al. 
(2011) 

82 Lycodes paamiuti 
(paamiut 
eelpout) 

350-1337 m Atlantic-
Boreal 

None   Mecklenburg et al. 
(2011) 

83 Lycodes pallidus 
(pale eelpout) 

19-1750 Arctic None   Mecklenburg et al. 
(2011) 

84 Lycodes polaris 
(Canadian 
eelpout) 

5-300 m  Pacific-Arctic None  CAO, Beaufort Sea FiSCAO (2017), 
Logerwell et al. 
(2011), 
Mecklenburg et al. 
(2011) 

85 Lycodes raridens 
(marbled 
eelpout) 

10-400 m  Pacific-Arctic None  Beaufort Sea Logerwell et al. 
(2011), 
Mecklenburg et al. 
(2011) 

86 Lycodes 
reticulatus 
(Arctic eelpout) 

100-930 m Atlantic-Arctic None   Mecklenburg et al. 
(2011) 

87 Lycodes rossi 
(threespot 
eelpout) 

42-365 m Atlantic-Arctic None  Beaufort Sea Rand & Logerwell 
(2011), 
Mecklenburg et al. 
(2011) 

88 Lycodes 
sagittarius 
(archer eelpout) 

335-600 m Arctic None  CAO FiSCAO (2017), 
Mecklenburg et al. 
(2011) 

89 Lycodes 
seminudus 
(longear eelpout) 

357-1400 m  Atlantic-Arctic None  CAO FiSCAO (2017), 
Mecklenburg et al. 
(2011) 

90 Lycodes 
squamiventer 
(scalebelly 
eelpout) 

357-1808 m Atlantic-Arctic None   Mecklenburg et al. 
(2011) 

91 Lycodes turneri 
(polar eelpout) 

10-125 m Atlantic-Arctic None   Mecklenburg et al. 
(2011) 

92 Lycodonus 
flagellicauda 

800-1993 m Atlantic-Arctic None   Mecklenburg et al. 
(2011) 

93 Macrourus 
berglax 

100-1000 m  Atlantic-Arctic Commercial Baffin Bay Jørgensen et al. 
(2005) 

94 Mallotus villosus 
(capelin) 

0-725 m Boreal-Arctic Highly 
commercial 

Broad Arctic 
distribution  

Mecklenburg et al. 
(2011), Rand & 
Logerwell (2011) 

95 Maulisia 
microlepis 
(smallscale 
searsid) 

500-2000 m  Wide 
(Atlantic-
Indian 
Ocean) 

None Baffin Bay Jørgensen et al. 
(2005) 

96 Melanogrammus 
aeglefinus 
(haddock) 

10-450 m Atlantic-Arctic Highly 
commercial 

Barents Sea Olsen et al. (2009) 

97 Myctophum 
punctatum 
(spotted 
laternfish) 

0-1000 m Atlantic-
Boreal 

None Kara Sea Dolgov (2013) 
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98 Myoxocephalus 
quadricornis 
(fourhorn 
sculpin) 

0-100 m Boreal No data Arctic shallow 
regions 

Mecklenburg et al. 
(2011) 

99 Myoxocephalus 
scorpioides 

0-275 m Boreal-Arctic No data Arctic shallow 
regions 

Mecklenburg et al. 
(2011) 

100 Myoxocephalus 
scorpius 

0-451 m Temperate-
Arctic 

Commercial Circumpolar, slope 
and shelves 

Mecklenburg et al. 
(2007, 2011) 

101 Nautichthys 
pribilovius 

0-422 m  Pacific-Arctic None Chukchi Sea, 
Beaufort Sea 

Mecklenburg et al. 
(2011), Rand & 
Logerwell (2011) 

102 Oncorhynchus 
gorbuscha 

0-250  Cosmopolitan
?Pacific-
subtropical-
Boreal 

Highly 
commercial 

  Andriyashev & 
Chernova (1996), 
Mecklenburg et al. 
(2011, 2018) 

103 Oncorhynchus 
keta 

0-250 m Pacific-Boreal Highly 
commercial 

  Andriyashev & 
Chernova (1996), 
Mecklenburg et al. 
(2011, 2018) 

104 Osmerus dentex 0-290 m Boreal-Arctic Commercial Coastal Arctic of 
Russia, Alaska and 
Canada 

Mecklenburg et al. 
(2011) 

105 Osmerus 
eperlanus 

0-50 m Atlantic-
Boreal 

Commercial White Sea, Barents 
Sea 

Mecklenburg et al. 
(2011) 

106 Paraliparis 
bathybius 

20-4009 m Atlantic-Arctic None CAO, Canada Basin, 
Continental slopes 

Stein et al. (2005), 
Mecklenburg et al. 

(2011) 

107 Pholis fasciata 0-94 m Boreal-Arctic None Western Arctic Mecklenburg et al. 
(2011) 

108 Platichthys 
stellatus 

0-375 Pacific-Arctic Commercial Bering Sea, Chukchi 
Sea 

Kono et al. (2016) 

109 Pleuronectes 
quadrituberculat
us 
(Alaska plaice) 

0-600 m Pacific-Arctic Commercial Bering Sea Andriyashev & 
Chernova (1996), 
Mecklenburg et al. 
(2011, 2018), 
Yeung & Yang 
(2014) 

110 Podothecus 
veternus 

10-605 m Pacific-Boreal No data Bering Sea, Chukchi 
Sea 

Mecklenburg et al. 
(2011) 

111 Pollachius virens 
(saithe) 
 

37-364 m Atlantic-Arctic Highly 
commercial 

Barents Sea Olsen et al. (2009) 

112 Rajella fyllae  
(round ray) 

170-2050 m Atlantic-Arctic None Baffin Bay, Barents 
Sea, Greenland Sea, 
Hudson Bay, 
Norwegian Sea 

Mecklenburg et al. 
(2011), 
Lynghammar et al. 
(2013) 

113 Rajella lintea  
(sail ray) 

150-1170 m  Atlantic-
Boreal 

None Barents Sea, Hudson 
Sea, Norwegian Sea 

Mecklenburg et al. 
(2011), 
Lynghammar et al. 
(2013) 

114 Reinhardtius 
hippoglossoides 
(Greenland 
halibut) 

1-2200 m Temperate-
Arctic 

Highly 
commercial 

CAO, Beaufort Sea FiSCAO (2017), 
Rand & Logerwell 
(2011), 
Mecklenburg et al. 
(2011) 

115 Rhodichthys 
regina 

1080-2365 m Atlantic-Arctic None CAO, Canada Basin Stein et al. (2005), 
Mecklenburg et al. 
(2011) 
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116 Salvelinus 
alpinus (Arctic 
charr) 

0-70 m Temperate-
Arctic 

Low 
commercial 
interest 

  Andriyashev & 
Chernova (1996), 
Mecklenburg et al. 
(2011, 2018) 

117 Salvelinus malma 
(Dolly varden) 

0-200 m Pacific-Boreal Commercial Chukchi Sea, White 
Sea  
 

Andriyashev & 
Chernova (1996), 
Mecklenburg et al. 
(2011, 2018), 
Courtney et al. 
(2016) 

118 Scomber 
scombrus  
(Atlantic 
mackerel) 

0-1000 m  Wide 
(Atlantic-
Mediterranea
n-Boreal) 

Highly 
commercial 

Coast of Jan Mayen Wienerroither et 
al. (2011) 

119 Sebastes 
mentella  
(beaked redfish) 

300-1441 m Atlantic-
Boreal 

Commercial Barents Sea, Atlantic 
Arctic 

Byrkjedal & Høines 
(2007), 
Mecklenburg et al. 
(2011) 

120 Sebastes 
norvegicus 
(golden redfish) 

100-1000 m Atlantic-
Boreal 

Highly 
commercial 

Barents Sea, Atlantic 
Arctic 

Byrkjedal & Høines 
(2007), 
Mecklenburg et al. 
(2011) 

121 Somniosus 
microcephalus 
(Greenland 
shark) 

0-2000 m Atlantic-Arctic Low 
commercial 
interest 

Baffin Bay, Barents 
Sea, Greenland Sea, 
Greenlnad coast, 
Hudson Bay, Kara 
Sea, Norwegian Sea, 
White Sea 

Mecklenburg et al. 
(2011), 
Lynghammar et al. 
(2013) 

122 Squalus 
acanthias (picked 
dogfish) 

0-1460 m Atlantic-
Boreal 

Commercial White Sea, Barents 
Sea, Norwegian Sea, 
Greenland coast 

Mecklenburg et al. 
(2011), 
Lynghammar et al. 
(2013) 

123 Squalus suckleyi 
(spotted spiny 
dogfish) 

15-110 m Cosmopolitan
? 
(Pacific-
subtropical) 

No data Bering Sea, Chukchi 
Sea 

Lynghammar et al. 
(2013) 

124 Stenodus 
leucichthys 

Coastal Pacific-Boreal Low 
commercial 
interest 

  Andriyashev & 
Chernova (1996), 
Mecklenburg et al. 
(2011, 2018) 

125 Stichaeus 
punctatus  

0-100 m  Boreal-Arctic None Bering Sea, Chukchi 
Sea, Beaufort Sea 

Suzuki et al. 
(2015), Kono et al. 
(2016) 

126 Stomias boa  
(boa scaly 
dragonfish) 

200-2173 m  Wide 
(Atlantic-
Boreal-sub-
Antarctic) 

None Baffin Bay Jørgensen et al. 
(2005) 

127 Triglops murrayi 7-530 m Temperate-
Boreal 

None North Atlantic going 
into the Arctic 

Mecklenburg et al. 
(2011) 

128 Triglops nybelini 71-1270 m Atlantic-Arctic None Circumpolar Logerwell et al. 
(2011), 
Mecklenburg et al. 
(2011), Suzuki et 
al. (2015 

129 Triglops pingelii 0-930 m  Temperate-
Boreal 

None Circumpolar Logerwell et al. 
(2011), 
Mecklenburg et al. 
(2011) 

130 Zapora silenus 
(prowfish) 

0-675 m  Pacific-Boreal None Bering Sea, Chukchi 
Sea 

Mecklenburg et al. 
(2011) 
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