Calculation example

Example: Green Hydrogen

The following example is **intended to show important aspects of how the methodology works in practice** and where possible errors could occur. The slides are included purely for illustrative purposes

- Consider a project to produce Green Hydrogen. Note this example project;
 - Falls within Energy Intensive Industry
 - Hydrogen as the only (and therefore principal) product
 - The sector is hydrogen
 - Hydrogen is supplied for industrial use

From: http://www.hydrogen.energy.gov/h2a production.html

GHG diagrams

Emissions avoidance
ΔGHG_{abs}

Identify Processes and Inputs

Reference Inputs + Process(es) + Combustion + End of Life Non-principal products

Process(es)

Inputs

ETS
benchmark for hydrogen

Project Inputs Process(es) + Combustion + Change in-use End of Life Non-principal products

Process(es) Inputs power (if not a process) electrolysis water heat (for high temperature Power electrolysis) generation? Renewable power production could be placed within the project boundary as a process, or outside the boundary as an input Emission factor for electricity consumed is zero either way (assumed 2050 grid

electricity GHG intensity)

European Commission

Focus on Heat

Non-identification of rigid inputs or incorrect identification of the alternative use of that input could lead to a SIW

Heat is required for high temperature electrolysis. Options:

- Heat generated by direct fossil fuel combustion -> include those combustion emissions
 as part of electrolysis process -> no heat as an 'input'
- Heat supplied from outside the project unit -> identify source and assess as an input
 - Heat as by-product from other process -> treat as rigid input, identify any emissions due to diversion
 - Otherwise, treat heat as elastic input, assess actual GHG emissions of heat generation

Process(es) Boxes

Project

Reference

Emissions avoidance

$$\Delta$$
GHG = GHG_{ETS H2} – GHG_{electrolyser}

Emissions for Processes and Inputs

Reference

Process 1, ETS benchmark for hydrogen: 6.84 tCO₂e/tH₂

Project

Input 1, power: 0 tCO₂e/tH₂

Possible SIW (e.g.: considering the emission factor of the local grid)

- Input 2, water: "emissions for water provision may be neglected"
- Input 3, heat: $59.1 \text{ tCO2e/TJ} \times 0.0032 \text{ TJ/tH}_2 = 0.189 \text{ tCO}_2\text{e/tH}_2$

Overall Change in Emissions

Reference

Inputs

Process(es) (6.84 tCO_{2e}/tH₂)

4

Combustion

+

End of Life

+

Non-principal products

Inputs $(0.189 \text{ tCO}_{2e}/\text{tH}_2)$

Process(es)

+

Combustion

Change in-use

+

End of Life

Non-principal products

Emissions avoidance

Example: expected production of 100,000 tH2/year

Reference emissions = $6.84 \text{ tCO}_{2e}/\text{tH}_2$ * 100000 tH₂/year* 10 years = 6840000 tCO_{2e} **Project emissions** = $0.189 \text{ tCO}_{2e}/\text{tH}_2$ * 100000 tH₂/year* 10 years = 188960 tCO_{2e}

 $\Delta GHG_{abs} = 6840000 - 188960 = 6651040 tCO2e$

 $\Delta GHG_{rel} = 6651040/6840000 = 97 \%$

Q&A Session

Take out your mobile device

Go to www.sli.do

Enter the code #IFLSC2022

Ask your question or vote for an existing one

