Best Practice (1)

Admissibility & Eligibility Degree of Innovation GHG emissions avoidance

Best practice Admissibility and Eligibility

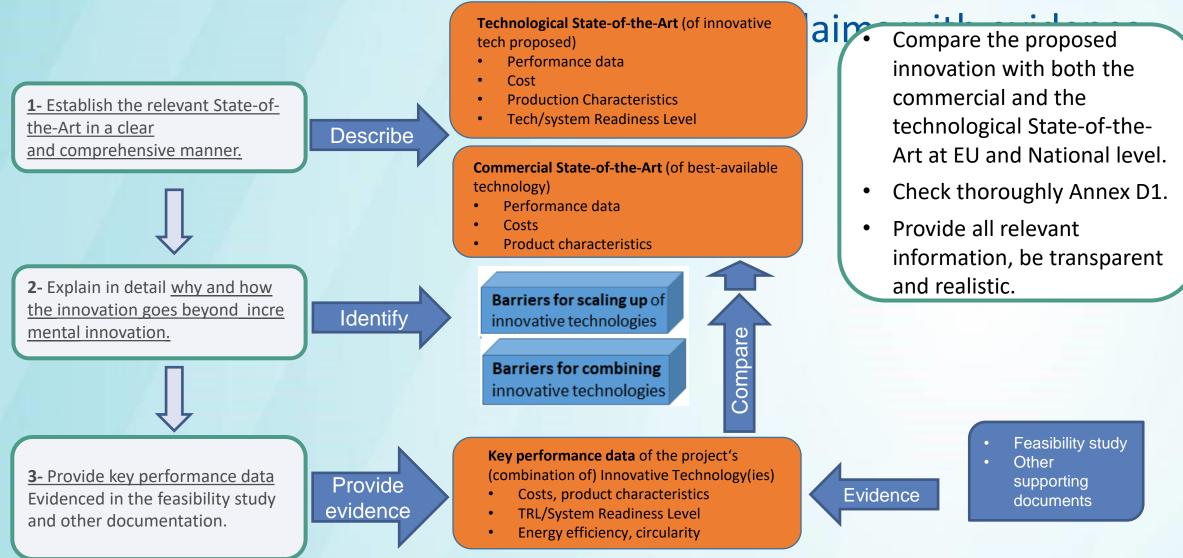
María ALFAYATE, CINEA Deputy Head of Unit Innovation Fund

Comprehensive application: Complete and timely

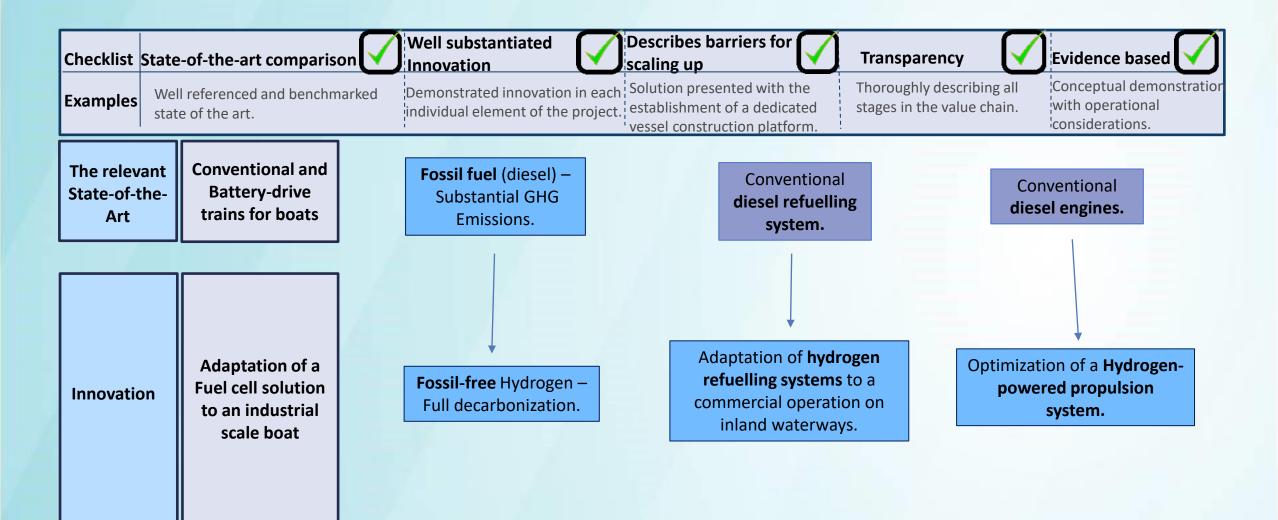
Read carefully all the requirements (including the admissibility and eligibility ones), guidance and instructions

Start well on time preparing your application and do not wait for the last day to submit (you can still modify your application before deadline)

Specific supporting documents are requested for Innovation Fund grants


Quality and clarity more important than quantity

Consult our FAQ, including for updates, and use Helpdesk if unclear


Best practice Degree of Innovation

Degree of Innovation (DoI): Be exhaustive and underpin your

Degree of Innovation – Hydrogen/Hydrogen Powered Vessel

Degree of Innovation – Solar Energy/PV Panels

Checklist	State-of-the-art comparison	Well substantiated Innovation	Transparency	Evidence based
Examples	The proposal does not address or characterise the existing state-of-the-art.	beyond the state-of-the-art, either	feasibility study and	The proposal does not provide credible data on performance data and plant design, construction and the operational approach.

	Product i	nnovation	Business innovation			
The relevant State-of-the-Art	Crystalline silicon PV panels.	Use widely available existing	Share of "just over 10%" of renewable energy production in the region.			
		technologies with no credible advancement (standard crystalline silicon PV panels) and other widely commercialized components.		"Improve the region's energy supply level and energy security". No credible data presented.		
Innovation	Use "the most modern and eco-friendly technology".	commercianzed components.	Increase the share of renewable energy production.			

Best practice GHG emissions avoidance

Uwe LUTZEN, CINEA Head of Sector, Innovation Fund Unit

Choose and apply the correct methodology: Dos

Follow the **IF GHG emission methodology** for calculation and reporting.

Clearly identify your **principal product(s**), then select sector, category, calculator, and methodology section accordingly.

Use correct **emissions factor(s)** in line with the methodology. For example, use EU ETS benchmarks where relevant.

Justify choices made in the application of the GHG emissions avoidance methodology, when relevant.

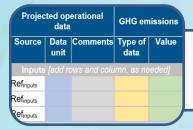
Assumptions must be robust, properly justified, and referenced. Justify operational data, and use the hierarchy of sources when relevant.

Choose and apply the correct methodology: Don'ts

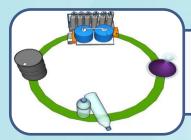
Do NOT use other GHG calculation approaches different than the **IF GHG Emission Avoidance methodology**.

Do NOT choose a sector or a category that is **not compatible** with your principal product. Clearly justify your choice.

Do NOT deviate from the methodology by using different-than prescribed **emission factors**, this may result in a major error.



Do NOT forget to clearly and thoroughly justify your choices. It is one of your responsibilities as an applicant.

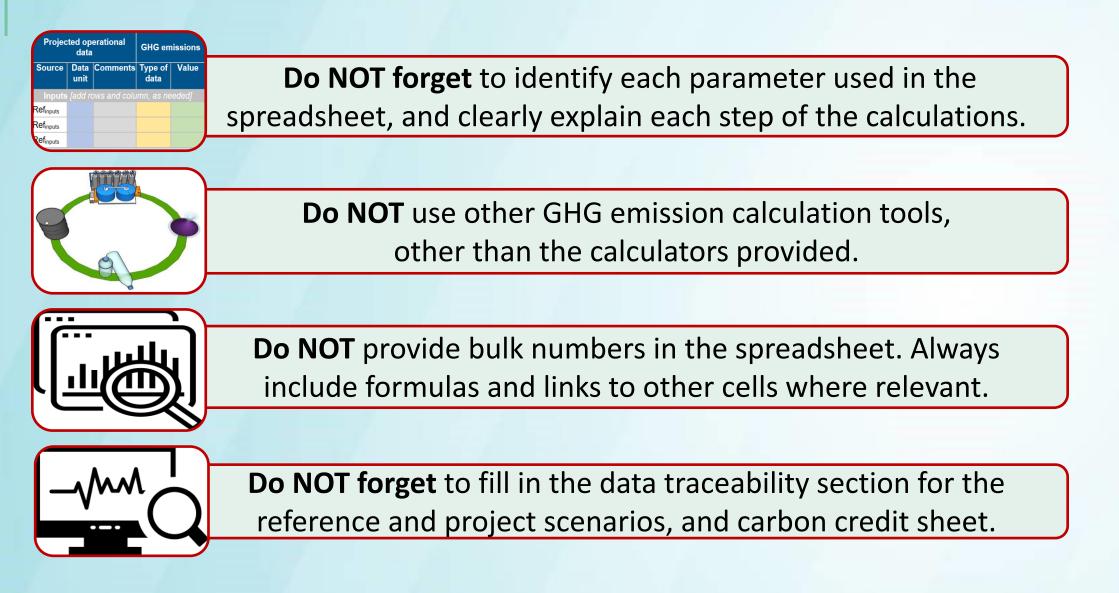


Do NOT provide unsubstantiated operational data. **Do NOT** deviate from the relevant hierarchy of sources.

Use the provided GHG calculators: Dos

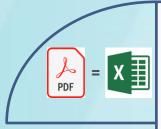
Clean, tidy and organised calculations using colour coding and clearly identifying each parameter that is used.

Provide full lifetime assessment in line with the IF GHG emissions **calculators** (spreadsheets) and methodology.



Further disaggregate parameters and provide formulas in the spreadsheet for more transparent and traceable calculations.

Provide a monitoring strategy by filling in the data traceability section of the spreadsheet.


Use the provided GHG calculators: Don'ts

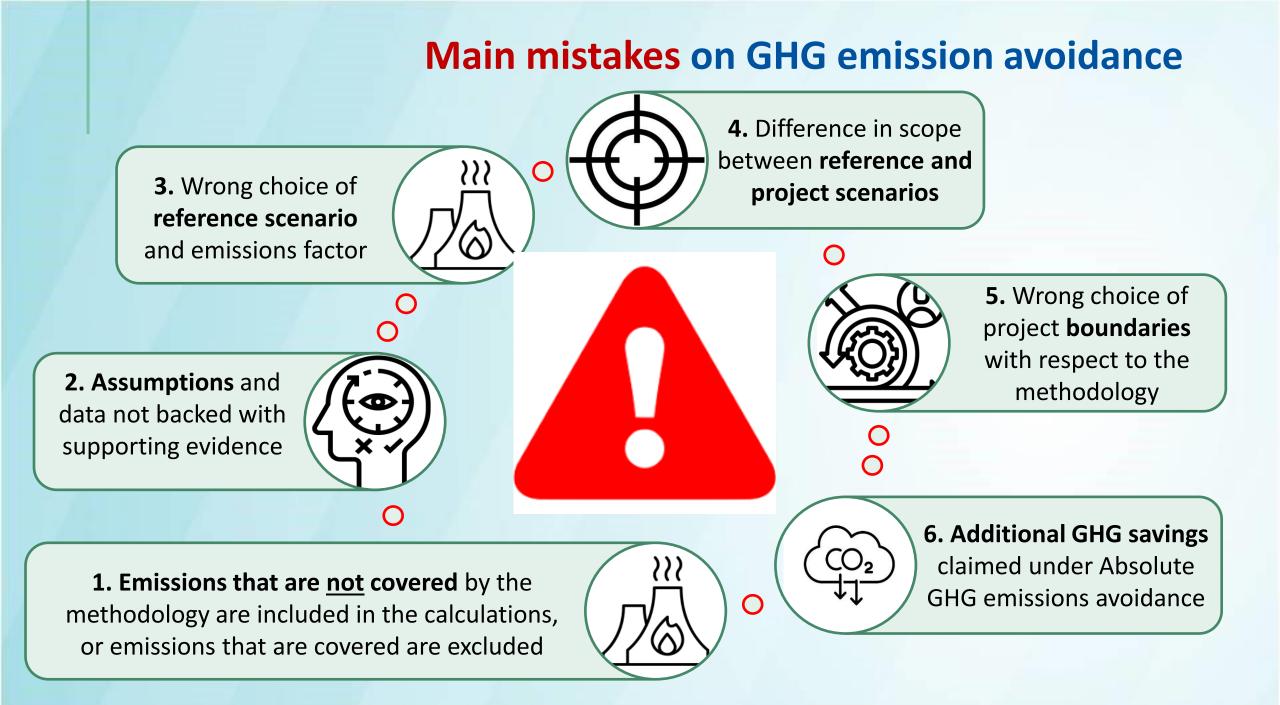
Be consistent across the documentation

In the **Application Form Part B Section 1**, clearly declare upfront the quantified absolute and relative emissions avoidance calculated for your project. **Follow this with a step-by-step calculation** of each parameter and references to the relevant cells in the Excel sheet.

Double check that the **absolute and relative emission avoidance** amount claimed, and the **sector, category, and principal product** chosen for your project **are the same in all the parts of the Application Form**, including Part A, Part B, Part C, and the GHG calculator.

Ensure that any **GHG savings that are excluded** from the methodology are **claimed separately** in the tab 'Other GHG emissions avoidance'. Significant other GHG emissions may be rewarded with additional points.

Assumptions and emissions factors: Document and properly reference them


Use projected operational data backed by robust evidence.

Document in a transparent manner the assumptions adopted to estimate and extrapolate.

In case of uncertainties use conservative values.

Detail all assumptions in a disaggregated manner and properly reference them.

Provide a clear verification trail: include the source of information and hyperlinks to the original reference, whenever a value is not provided in the methodology.

Practical tips for Energy Intensive Industry projects:

- Fill-in all the sections of the GHG calculator, from inputs to processes to end of life.
- Include inputs even if they are the same in the project and reference scenario.
- Justify de-minimis inputs.
- Do NOT include emissions associated to upstream fossil fuel supply (e.g. extraction)
- Include combustion emissions for fuels.
- Include end of life emissions for chemicals and other products.

		Projec	ted operation	tional data	
Source	Plant / Unit	Description of parameter	Data unit	Year 1	Comments about data
Inputs [add	rows and colu	mn, as needed]			
Proj _{inputs}	Electrolysis plant	Electricity for hydrogen production	MWh	1,283,333	This table is a combination of different examples for
Proj _{inputs}	Electrolyser	Amount of water consumed	tonne	207,900	illustrative nurnoses
Proj _{inputs}	FT reactor	Consumption of catalyst	tonne	14	This is identified as a de-minimis input. Applicant should substantiate de-minimis status.

Processes	[add rows a	nd column, as ne	eded]		
Ref _{processes}	Methanol plant	Tonnes of methanol produced	tonnes	50,000	

Combustion	Combustion [add rows and column, as needed]						
Ref _{combustion}	Vehicle	Fuel supply to market	tonnes	12,500	For novel fuels including RFNBOs the stoichiometric combustion emissions must be included here		
Ref _{combustion}	Vehicle	Fuel supply to market	tonnes	30,000	See above		
Ref _{combustion}	Vehicle	Fuel supply to market	tonnes	7,500	See above		

End-Of-Life	End-Of-Life [add rows and column, as needed]					
Proj _{EoL}	End of life	ratio of mass of biogenic carbon in carbon sources	tonnes	45,659	release CO2 at stoichiometric ratios.	
Proj _{EoL}	End of life	Fraction of non- biogenic carbon calculated using ratio of mass of biogenic carbon in carbon sources	tonnes	4,341	Assume that all produced methanol (and any materials produced from the methanol output) is eventually combusted or decomposed to release CO2 at stoichiometric ratios	

Practical tips concerning project assumptions: Use of principal products

- The intended use of the product must be substantiated and justified. For example, by providing draft contracts.
- For example, for products that can either be used as chemicals or fuels, the reference scenario can be built on the relevant benchmark, or on the relevant fossil fuel comparator, depending on the intended use.
- If it is not defined yet what will be the final use of the product, conservative assumptions should be used in the GHG emission avoidance calculation.
- If the assumed use of the product is not well substantiated, this may be identified as an issue during evaluation.
- If less conservative assumptions are used in the application, this may also result in issues during monitoring and reporting of GHG emission avoidance.

Example: generic hydrogen production

If a project produces hydrogen and cannot well substantiate a specific intended use, for example in transport, the reference scenario should be based on the EU ETS hydrogen benchmark, and the sector should be Ell/hydrogen.

Example: hydrogen to be used in vehicles

If a project produces hydrogen that will be used in vehicles, the reference is based on the relevant fossil fuel comparator instead of using the hydrogen benchmark, and the project falls under sector Ell/refineries rather than Ell/hydrogen.

The application should demonstrate that, for example, a draft contractual arrangement exists with a hydrogen refuelling facility for mobility applications.

Example: hydrogen in heating

If a project focuses on the use of hydrogen in heating applications, and its principal product is heat, if falls under sector EII/other, rather than EII/hydrogen.

Practical tips for Manufacturing projects: Cost Share (CS _{component})

- If a project manufactures an entire innovative facility or product, it can claim 100% of the related GHG savings.
- If a project manufactures only a component, it can only claim a fraction <100% proportional to the cost of the component with respect to the cost of the full system.
- Clearly justify and substantiate your assumptions and calculations with respect to the CS_{component}.
- This applies to manufacturing projects under every category (EII, RES, ES).

Applicants must allocate emissions avoidance from the use of the individual components proportionally based on the innovative components' cost as a fraction of the total capital cost of the relevant facility or the total retail price of the relevant consumer product. The total capital cost for a facility is the sum of the cost of an innovative component plus standard costs of the remaining components constituting a typical operational renewable energy or energy storage facility using the innovative component. For components used in consumer products, the retail price should be based on a typical use case for the component, and may exclude sales taxes. Applicants must provide appropriate references to justify this cost assessment.

<u>Example:</u> If an innovative component represents 25% of the total capital cost for an operational renewable energy/energy storage facility, then the emissions in the project and reference scenarios (and therefore the emission avoidance achieved) should be multiplied by 25%.

CS_{component} = innovative components' cost as a fraction of the total capital cost of the relevant facility or retail price of the consumer product. The total capital cost for a facility is the sum of the cost of an innovative component plus standard costs of the remaining components constituting a typical operational renewable energy facility using the innovative component. For components used in consumer products, the retail price should be based on a typical use case for the component, and may exclude sales taxes. Applicants must provide appropriate references to justify this cost assessment.

Source	Parameter monitored	Description r			Year 2	Year 3	Comments
N	N	Number of renewable energy units supplied to markets by the proposed manufacturing plant.		30	120	270	_
CS _{component}	component costs	Innovative components' cost as a fraction of the total capital cost of the relevant facility.		0.2	0.2	0.2	