

Main principles and application process

GHG Emission Avoidance Criteria

The GHG methodology forms the **basis of the scoring for the "GHG emission avoidance effectiveness" criterion** and informs applicants on how to estimate GHG emissions avoidance over the first 10 years of operation for their type of project.

Where:

- Ref: emissions that would occur in the absence of the project
- Proj: emissions from the project activity

Submitting an application Step by step

Slido **#IF23Call**

Serious inherent weaknesses (SIW)

Serious inherent weaknesses are mistakes, that occur in one or more steps of the application process, which can **substantially influence the GHG emissions avoidance calculations**.

The identification of serious inherent weaknesses automatically fail the proposal.

Define project and organisational boundaries	Classify your project	Identify the appropriate methodology section and tools	Identify the reference scenario for your project type and sector	Apply your projected operational data to calculations	 Upload estimated GHG emissions avoidance to submission portal alongside supporting calculation tool
Examples:	Conceptual errors leading to significant discrepancy in the GHG emissions calculation, due to claimed credits of non-principal	Double counted reductions for hybrid projects Or Incorrect selection or application of the	Emissions factors, ETS benchmarks and Fossil Fuels Comparators differ from those provided Use of an alternative	Inclusion of emissions that are outside the boundaries of the GHG methodology Omission of	Part B of the application form have not been filled-in correctly
	credits of non-principal products	or application of the GHG methodology	Use of an alternative reference scenario that fits your project best	Omission of emissions that are mandatory	European Commission

Define your boundaries

What is your project idea? What practice or product do you intend to replace? The geographical outreach? Where does it sit in the value chain, production or use?

What is your project idea? To replace the conventional maritime fuel in large vessels with biofuels What practice or product do you intend to replace? A cleaner transportation of good and passengers The geographical outreach? Biofuel will be supplied by a local producer, and will cover the demand of all international cargo trips Where does it sit in the value chain, production or use? Only the use of the biofuels, the production of such fuels is not part of the project

Define your boundaries

The system boundaries vary depending on the sector of the project. Overall, the methodology is structured with the intention of capturing the **most common and material GHG emission sources covered under the ETS**, such as :

- Fuel combustion in stationary and on-site vehicles
- Fugitive emissions in geothermal power plants and CCS projects
- Emissions from the transport and supply of biomass-based fuels.

Emissions generally excluded

- Capital goods
- Extraction, processing, refining, distribution and storage of fossil fuel
- Fugitive emissions due to well testing and well bleeding in geothermal power plants
- Biogenic CO₂ emissions from combustion of biomass, decomposition or degradation at EoL, processes
- Indirect land use change

- Decommissioning of the power plant and machinery at the end-of-life
- Employee commuting, business travels and waste generation at administrative offices
- Manufacturing process in the sector 'Manufacturing of components for production of renewable energy or energy storage'.
- Transport in EII (with the exceptions of section 1.1.5)

Define your boundaries

Transport emissions should be considered in the following cases:

- CO₂ transport associated emissions in projects including a CCU or CCS element.
- Reference scenario for one or more of the principal products is based on a physically different product that is used for a comparable function → the project emissions must include any emissions associated with distributing that principal product to the point of use.

 Biomass or waste materials are used as feedstock/inputs → the project emissions must include any additional emissions associated with gathering those materials and transporting them to the first point of processing/treatment when the transport range exceeds 500 km. Applicants may use actual values or values given in the methodology

Classify your project

When submitting the application, the applicant needs to choose the sector under which the project falls. This choice may influence the outcome of the evaluation, as they will be ranked under the sector of the project. The sector is determined based on the function of the principal product or service that is the main aim of the project.

Category	Energy Intensive Industries (EII), incl. carbon capture and storage (CCS) and utilisa Renewable energy (RES) / Energy storage (ES) / Mobility / Cleantech manufacturin	ation (CCU) / Ig
Sector	EII \rightarrow chemicals, hydrogen, etc. / RES \rightarrow wind, solar, etc. / ES \rightarrow intra-day, other storage / Mobility \rightarrow aviation, maritime / Cleantech \rightarrow manufacturing of components for ES, RES, EII	Examples for each category
Product / service	Chemicals \rightarrow organic chemicals, etc. / Solar \rightarrow dispatchable electricity, heating, c Other storage \rightarrow hydrogen-based storage / Aviation \rightarrow transp. of goods Components for EII \rightarrow electrolisers, etc.	ooling. Examples for selected sectors

Classify your project

1.2 Specification of a sector for the purpose of the GHG emission avoidance calculations, and principal products

When submitting the application, the applicant needs to choose the sector under which the project falls (see Table 1.1). Note that this choice may influence the outcome of the evaluation, see the call text for details. The sector shall be determined based on the function of the principal product or service that is the main aim of the project.

Table 1.1 provides an overview of sector classification associated with possible principal products or services, and provides an indication of the section of the methodology to follow for the GHG emission avoidance calculation of a given type of project. The sector **must** be chosen from the list provided, but the principal product may not be explicitly listed (for example a project in the sector 'glass, ceramics and construction material' may specify its principal product as 'shatterproof glass' rather than identifying one of the more generic products listed below). Table 1.1. Sector classification and methodology section

CATEGORY ⁵	SECTOR ⁶	PRODUCTS/SERVICES ⁷	SECTION
Energy Intensive	Refineries	fuels (incl. e-fuels, bio-fuels)	Section 2
Industries (EII)	Iron & steel	coke iron iron ore steel cast ferrous metal products other ferrous metal products or substitute products, please specify	Section 2
	Non-ferrous metals	aluminium, precious metals, copper, other non- ferrous metal, cast non-ferrous metal products, other ferrous metal products or substitute products, please specify	Section 2
	Cement & lime	cement cement clinker lime, dolime, sintered dolime other cement or lime products or substitute products, please specify	Section 2
	Glass, ceramics & construction material ⁸	flat glass container glass glass fibres other glass products tiles, plates, refractory products bricks houseware, sanitary ware other ceramic products mineral wool gypsum and gypsum products other construction materials or substitute products please specify	Section 2
	Pulp & paper	chemical pulp mechanical pulp paper and paperboard sanitary and tissue paper other paper products or substitute products, please specify	Section 2
	Chemicals	organic basic chemicals	Section 2

Please refer to the Section 1.2, Table 1.1 of GHG methodology for full list of sectors and products/services

Classify your project

Project examples	Advice on the choice of category and sector
Biorefineries	Depending on the final products, bio-refinery projects need to choose either: refineries if predominantly producing fuels; or chemicals if predominantly producing chemicals; or pulp and paper if predominantly producing pulp and paper products. In some cases, applicants will be able to choose between refineries and chemicals.
Direct air capture (DAC) or waste to energy with CCS	EII → Other
DAC with CCU	Such projects must result in substitute products for the products of Annex I of the ETS Directive. The sector to choose is the sector of the substitute product.
Wastewater treatment	Such a project can be eligible if using RES, then the sector is "Use of renewable energy outside Annex I". If biofuels are produced, then refineries can be chosen.
Water desalination	Such a project can be eligible if using RES, then the sector is "Use of renewable energy outside Annex I". If using more than 20 MWh, then the sector can be classified as EII \rightarrow Other.
SAF production	Projects aiming exclusively to produce SAFs shall apply under the EII category. However, projects that envisage both the production and use of SAFs shall apply as a hybrid EII and AVI project.

Classify your project Choosing your principal product

The main aim or purpose of your project may determine the sector and the reference emissions.

If you will produce:

your

just one product: your one product is your principal product, but in some case the use may vary more than one product, but all in the same sector: your principal product will reflect the outputs of type of industry
 products from 2 or more sectors: choose one of the sectors of the principal products, other products not pertaining to the chosen sector are then non-principal products

Example: a project produces hydrogen with electricity. If the <u>main</u> aim of the project is:

... to store otherwise curtailed renewable electricity \rightarrow Sector is 'energy storage' ... to produce as much hydrogen as possible \rightarrow Sector is 'hydrogen' under EII, and the reference is EU ETS benchmark for hydrogen

... **to produce hydrogen for transport applications** -> Sector still hydrogen under EII, but reference is fossil fuel comparator for the transport fuel displaced

... if it is **combined with innovative renewable electricity** \rightarrow Sector is either 'renewable electricity' or 'energy storage', submitted as hybrid project

Identify your adequate methodology(ies)

Section 7: Aviation, including plants for the manufacturing of aircraft or their components

Section 6: Maritime, including plants for the manufacturing of vessels or their components Section 2: Energyintensive industries, including CCU and biofuels, substitute products

Section 5: Energy storage including plants for the manufacturing of ES components

Section 3: Carbon

Capture Credit: alculation detailed in section 3 but rojects classified

RES sector

Section 4:Production and use of renewable electricity, heat and cooling, including plants for the manufacturing of RES components

Each section includes:

- Scope
- System boundaries
- Instructions on how to calculate the Absolute and relative GHG emissions avoidance
- Data and parameters: default values to be used, and data to be monitored for disbursement and for knowledge-sharing purposes
- Supporting documents: GHG Calculation tool, an example and a video tutorial

Identify your adequate methodology(ies) Hybrid project

Applicants may combine activities related to two or three eligibility categories (energy-intensive industry, renewable energy sources, energy storage), to be referred to as hybrid projects.

- Absolute GHG emission avoidance: calculate separately using respective methodologies and add them up. <u>Remove double counting</u> of avoidance and/or emissions, if any.
- Relative GHG emission avoidance: calculate based on the cumulated emission avoidance and the cumulated project emissions

Note: Projects that capture CO_2 generated that have products under the EII or under RES categories are not deemed hybrid projects. These projects shall combine the calculation of the CC component of the project following Section 3 with the EII component (Section 2) or RES component (Section 4), whilst removing any double counting.

Example of Hybrid Project 1

Example of Hybrid Project 2

Identify your adequate methodology(ies) Hybrid project examples EII + ES

EII + RES

Typical project: export renewable electricity and/or heat from an industrial plant belonging to one of the EII sectors.

Pay attention to:

- Correct emission factor for electricity in the different parts of the project, i.e. factor from RES section for the net electricity export
- The power from the RES part will be pre • to local use in the EII part

To cumulate GHG savings from different sectors, follow the instructions from all corresponding sections and avoid double counting!

Typical project: Projects that include physical or virtual storage of renewable electricity

Pay attention to:

- Split feed-in of renewable electricity generated by the • project into a storage component and the residual uncontrolled feed-in.
- Provide a detailed plan how to match the storage • consumption to times when emissions of electricity supply are below average. RES + ES

Typical projects: Fuel productions and its usage in vessels/aircrafts.

Pay attention to:

Pay attention to:

part.

In general, fuel production projects are considered to be ٠ EII.

Typical projects: combination of hydrogen production and

storage; virtual load management of industrial installations.

Amount of revenues should be the guiding principle to

split production activities between the EII part and the ES

To gain credits for reducing non-standard GHG emissions, • the usage must be part of the project and treated as in the MAR/AV section. European

Identify your reference scenario

The GHG emissions that would occur **in the absence of the project** are calculated based on the assumption that the **product** would be delivered under the following circumstances

Category / Sectors / products	GHG emissions are based in the reference scenario (among others) on:
EII	EU ETS benchmark(s), fossil fuel comparators (FFCs, see Table 2.2), or proposed by applicants if the reference cannot be constructed by combination of benchmarks and FFCs
Ell / Refineries / Biofuels	Adapted fossil fuel comparators from REDII ⁽¹⁾
EII / CCS	CO ₂ is released (i.e., not captured) /available in atmosphere
RES / Renewable electricity	2030 electricity mix
RES / Renewable heat	Natural gas boiler
Ell / other (bio-heat)	
RES / Renewable cooling	2030 electricity mix

Identify your reference scenario

The GHG emissions that would occur **in the absence of the project** are calculated based on the assumption that the **product** would be delivered under the following circumstances

Category / Sectors / products	GHG emissions are based in the reference scenario (among others) on:	
ES / Energy storage RES / Dispatchable renewable electricity Ell / other (bio-electricity)	Single-cycle natural gas turbine (used for peaking power)	
ES / Electricity grid auxiliary services	Combined-cycle natural gas turbine (partial load)	Reminder : modifying
ES / Heat / Hydrogen storage	EU ETS benchmark for heat / hydrogen production	match your specific
ES / Energy storage in vehicles	Diesel-fuelled internal combustion engine	project case will be
MAR	A conventional vessel running on heavy fuel oil	treated as a SIW
AVI	A conventional aircraft running on jet A1 Kerosene	

Apply your data to the calculation GHG Calculators

Tools have been made available to support the calculation in the various sectors. The methodology includes default parameters that will be deemed as constant throughout the duration of the project, including the ETS benchmarks. This to secure alignment and reduce the volume of data to be defined and monitored by the applicant.

Summary This is a Pivot Tab To update the pivot	le. As such, changes t table with the applie	s you make to the da d changes to the te	ata set are not auto xt or numbers in yo	matically picked up our data set, you ne	by it. ed to refresh it: (1)	Click any cell inside	e the pivot t	able. (2) R	Right click	GHG emission factors, and othe	- er conversion factors for calcula	tion of reference emissions		
Rew Labels T Refinputs Refprocesses Refproducts	Sum of t CO2e									Type of data	Description	Fuel / Feedstock / Product	Proposed value	Data unit
Refuse										Default factors				
Grand Total										ETS Product benchmarks	Coke-oven coke (obtained fro	Coke	0.217	tCO2e / t
Reference emiss	ions calculation									ETS Product benchmarks	Agglomerated iron-bearing pro	Sintered ore	0.157	tCO2e / t
Note: for many pr disaggregate pro	ojects the reference cess emissions, an	e emissions for p d may be no emiss	rocesses will be b sions in the inputs	based on an EU E s, products, use o	TS benchmark, fo r end of life boxe	ssil fuel comparat s. Note that there	tor or othe may still b	r natural- e input er	gas-base missions	ETS Product benchmarks	Liquid iron saturated with carb	Hot metal	1.288	tCO2e / t
						Decise to die		data		ETS Product benchmarks	Anodes for aluminium electrol	Pre-bake anode	0.312	tCO2e / t
						Projected o	perational	Gata		ETS Product benchmarks	unwrought non-alloy liquid alu	Aluminium	1.464	tCO2e / t
Source	Plant / Unit	Process	Input	Output	Parameter monitored	Description of parameter	Data unit	Year 1	Year 2	ETS Product benchmarks	Grey cement clinker as total c	Grey cement clinker	0.693	tCO2e / t
										ETS Product benchmarks	White cement clinker for use a	White cement clinker	0.957	tCO2e / t
Inputs [add rows a	nd column, as need	eaj								ETS Product benchmarks	Quicklime: calcium oxide (Ca	Lime	0.725	tCO2e / t
Ref _{inputs}							•			ETS Product benchmarks	Dolime or calcined dolomite a	Dolime	0.815	tCO2e / t
Ref _{inputs}										ETS Product benchmarks	Mixture of calcium and magne	Sintered dolime	1.406	tCO2e / t
Ref _{inputs}										ETS Product benchmarks	Float/ground/polish glass (as	Float glass	0.399	tCO2e / t
Processes [add ro										ETS Product benchmarks	Bottles of colourless glass of a	Bottles and jars of colourless g	0.290	tCO2e / t
										ETO D I VI I I			0.007	

Apply your data to the calculation Emission factors for the grid electricity

Table 1.3. Emission factors for applications involving production, use and/or storage of grid electricity

Category / sector / products	Net electricity exported	EF	Electricity consumed	EF
Energy intensive industry, except bio-electricity	Net amount of electricity exported from the project to the grid	0.00 gCO ₂ e/MJ	Amount of electricity fed from the grid to the project	0.00 gCO ₂ e/MJ
Electricity-saving projects in energy intensive industry	An electricity- saving projects would not deliver net electricity export	n/a	Amount of electricity saved (i.e. no longer fed from the grid to the system)	48.8 gCO2e/MJ [0.176 tCO2e/MWh]
Timed electricity demand (see section 2.2.6.3.6):	A virtual-stored- energy-release component	140 gCO2e/MJ [0.505 tCO2e/MWh]	A constant average consumption component	0.00 gCO2e/MJ
ccs	A CCS-only project would not deliver net electricity export	n/a	Electricity consumed for injection and/or capture:	0.00 gCO2e/MJ
Renewable non- dispatchable electricity	Net amount of electricity produced in the reference scenario and replaced by non-dispatchable electricity in the project scenario	48.8 gCO2e/MJ [0.176 tCO2e/MWh] EFelectricity/ref	Amount of electricity imported from the grid and consumed at the project site:	0.00 gCO2e/MJ EFelectricity.proj
Renewable dispatchable electricity, including bio- electricity in Ell	Net amount of electricity produced in the reference scenario and replaced by dispatchable electricity in the project scenario	140 gCO2e/MJ [0.505 tCO2e/MWh] EFelectricityzef	Amount of electricity imported from the grid and consumed at the project site:	0.00 gCO2e/MJ EFelectricity.proj

The EF for the grid electricity is not the same across all project categories and applications.

Make sure you adopt the adequate EF for your project.

Please refer to the Section 1.2, Table 1.3 of GHG methodology for full list of EF for either use, generation or storage of grid electricity

Apply your data to the calculation Assumptions

Applicants are required to document quantitative and qualitative assumptions used in the calculations. A transparent documentation of methods and secondary data used to extrapolate/estimate the operational data allow for a more effective review of the robustness of data adopted.

Quantitative assumptions

Data / Assumption	Proposed value	Data unit	Description	Basis or source of the assumption	Hyperlink to the original source, if applicable	Brief description of the monitoring plan	Area / Department responsible
Example: Share of organic waste in the MSW incinerated in project	0.00%	%	Solid waste composition	Conservative assumption by the applicant to avoid possible overestimation of GHG emission avoidance claims			

[add or exclude rows and columns, as needed]

Qualitative assumptions

Data / Assumption	Description	Basis or source of the assumption	Hyperlink to the original source, if applicable	Brief description of the monitoring plan	Area / Department responsible
Example: No demand for offshore service vessels	No demand for offshore service vessels as O&M will be performed using drones	Based on project planning, and best practices in year 2020.	<u>Project</u> <u>Planning_O&M</u>		

[add or exclude rows and columns, as needed]

Apply your data to the calculation Examples

Make sure you consult the hypothetical examples available to illustrate the use of the tool for each project category. Find available examples here: <u>https://cinea.ec.europa.eu/innovation-fund/tools-and-guidance_en</u>

Apply your data to the calculation Monitoring plan

For the project-specific data used in GHG avoidance calculation, a monitoring plan consisting of a detailed, complete and transparent documentation of the information and data sources shall be submitted at the application.

			Data traceability				
Provide a brief description cal	of your monitoring plan. It r culated, checked/reviewed a	nay include procedures for da and reported), as well as roles	ata collection procedures (in s and responsibilities. You m	formation on how the paran nay include diagrams showi	meters are measured/calcula ng all relevant monitoring po	ted, aggregated, recorded, ints.	
Area / Department responsible for collection and archiving	Data source	If applicable, equipment used for monitoring, including details on accuracy and calibration	Monitoring frequency	QA/QC Procedures	Additional description of the monitoring system	Reliability	
		-				Primary Data	
	Taken from data manag Internal control spreads Direct measurement Estimated Adoption of assumption	ement platform heet ns (please describe)				Primary Data Third Party Data Secondary Data - Calculate Secondary Data - Based on Secondary Data - Extrapola Other evidence	d based on a assumption tion
	Extrapolation (please de Sample (please describe Other	scribe)					

Apply your data to the calculation Best practices checklist

Example of questions:

To ensure you prepare your submission in line with the best practices, we recommend you consult the Checklist tab, where you can self-assess your own project against the best practices for calculating and presenting GHG emission avoidance to eliminate possible mistakes. This checklist has been built based on the experience gathered from previous calls, the common mistakes identified as well as the best practices followed by applicants.

Alignment with the methodology	In case an EU ETS benchmark is used, are these values up to date?
Transparency of the	Have each adopted assumption been disaggregated in the excel sheet (i.e. in easily verifiable units) and with their
calculation	rationale (i.e. the basis of the calculation) properly referenced and/or any data sources used?
	Have projected operational data been backed by robust evidence or, if estimated/extrapolated, linked to the
	assumptions table? Are the conversions sufficiently visible so they can be easily reviewed and the robustness of the
Robustness of data	assumptions checked? Are the characteristics of the proposed plant credible and in line with basic engineering
	principles, e.g. heat and mass balance? Where assumptions have been applied for operational characteristics and KPIs
	used, have these been selected in a conservative yet accurate manner, i.e. to avoid under/over estimation?
Transparency of the	Has a clean, tidy and organised excel sheet with different colour codes (in order to visually differentiate cells with
Transparency of the calculation	Has a clean, tidy and organised excel sheet with different colour codes (in order to visually differentiate cells with input data, comment and calculations) been provided?
Transparency of the calculation	Has a clean, tidy and organised excel sheet with different colour codes (in order to visually differentiate cells with input data, comment and calculations) been provided? Have absolute and relative emissions for the full 10 years of operation and, in the case of EII projects, the EU ETS
Transparency of the calculation Consistency of the	Has a clean, tidy and organised excel sheet with different colour codes (in order to visually differentiate cells with input data, comment and calculations) been provided? Have absolute and relative emissions for the full 10 years of operation and, in the case of EII projects, the EU ETS benchmark used (if applicable) been objectively and visibly declared in the Application Form B? Are these values
Transparency of the calculation Consistency of the application	Has a clean, tidy and organised excel sheet with different colour codes (in order to visually differentiate cells with input data, comment and calculations) been provided? Have absolute and relative emissions for the full 10 years of operation and, in the case of EII projects, the EU ETS benchmark used (if applicable) been objectively and visibly declared in the Application Form B? Are these values declared also consistent with the values indicated in the excel sheet? (E.g.: Absolute GHG emission avoidance potential
Transparency of the calculation Consistency of the application	Has a clean, tidy and organised excel sheet with different colour codes (in order to visually differentiate cells with input data, comment and calculations) been provided? Have absolute and relative emissions for the full 10 years of operation and, in the case of EII projects, the EU ETS benchmark used (if applicable) been objectively and visibly declared in the Application Form B? Are these values declared also consistent with the values indicated in the excel sheet? (E.g.: Absolute GHG emission avoidance potential for the project is XXX million tons CO2 for the first 10 years of operation).
Transparency of the calculation Consistency of the application Sustainability	Has a clean, tidy and organised excel sheet with different colour codes (in order to visually differentiate cells with input data, comment and calculations) been provided? Have absolute and relative emissions for the full 10 years of operation and, in the case of EII projects, the EU ETS benchmark used (if applicable) been objectively and visibly declared in the Application Form B? Are these values declared also consistent with the values indicated in the excel sheet? (E.g.: Absolute GHG emission avoidance potential for the project is XXX million tons CO2 for the first 10 years of operation). For projects using feedstock of biogenic origin: have sufficient assurance that the biomass supplied will meet the
Transparency of the calculation Consistency of the application Sustainability requirements	Has a clean, tidy and organised excel sheet with different colour codes (in order to visually differentiate cells with input data, comment and calculations) been provided? Have absolute and relative emissions for the full 10 years of operation and, in the case of EII projects, the EU ETS benchmark used (if applicable) been objectively and visibly declared in the Application Form B? Are these values declared also consistent with the values indicated in the excel sheet? (E.g.: Absolute GHG emission avoidance potential for the project is XXX million tons CO2 for the first 10 years of operation). For projects using feedstock of biogenic origin: have sufficient assurance that the biomass supplied will meet the sustainability requirements of the recast Renewable Energy Directive (RED II) and that will originate from feedstock

Submit your application

Using the indicators calculated automatically and summarised in the "Summary" tab, applicants shall transfer the corresponding information to the mandatory forms. Having a well-structured and tidy summary table will facilitate transferring results to the forms, and reduce mistakes in the calculation of reference emissions for projects with multiple products

Key indicators	Description	Value	Data unit	
Absolute GHG emission avoidance (∆GHGabs)	Net absolute GHG emissions avoided thanks to operation of the project during the first 10 years of operation	0	tCO2e	Application
Relative GHG emission avoidance (∆GHGrel)	Relative GHG emissions avoided due to operation of the project during the first 10 years of operation	0	%	Form B
GHG emissions in reference scenario (Ref)	GHG emissions that would occur in the absence of the project during the first 10 years of operation	0	tCO2e	Application
GHG emissions in project scenario (Proj)	GHG emissions associated with the project activity and site during the first 10 years of operation	0	tCO2e	Form C
Average GHG emissions intensity of the	Principal product 1		tCO2e / unit quantity of principal product 1 [Please replace with adequate unit]	
installations to produce a unit quantity of principal	Principal product 2		tCO2e / unit quantity of principal product 2 [Please replace with adequate unit]	
product in the reference scenario, or EU ETS	Principal product 3		tCO2e / unit quantity of principal product 3 [Please replace with adequate unit]	Knowledge
Average GHG emissions intensity of the	Principal product 1		tCO2e / unit quantity of principal product 1 [Please replace with adequate unit]	Charing
installations to produce a unit quantity of the	Principal product 2		tCO2e / unit quantity of principal product 2 [Please replace with adequate unit]	Sharing
principal product in the project scenario	Principal product 3		tCO2e / unit quantity of principal product 3 [Please replace with adequate unit]	

