Credit for carbon capture and storage/utilisation Overview and calculation

Chris Malins, Cerulogy

Carbon Capture and Storage (CCS) Carbon Capture and Use (CCU)

- Some projects in the energy intensive industries or renewable energy categories may include elements of carbon capture and storage or utilisation
- Credit for CCS (in accordance with the CCS Directive) may be given when:
 - CO₂ generated within the system boundary of a project is captured and will be transferred to a storage site
 - A project does not include carbon capture from a process but involves the development of CO2 transport infrastructure and/or CO₂ storage sites
- Under IF23 if applicants from different parts of a single CO₂ storage chain may apply and are no longer required to divide the CO₂ avoidance between
 themselves
 - E.g., three projects could apply to capture, transport and store a single CO₂ stream, and would be treated as independent projects

CCS/U sectors

- Projects that capture CO₂ within the system boundary and transfer it for storage ٠
 - Sector and category determined by the principal product
 - The CO₂ stream that is subject to capture should be included as a project emission under processes (EII methodology) or the Proj_{bio/geo} term (RE methodology) (biogenic CO₂ would be zero rated)
 Projects that transport or store CO₂ that is captured outside the system boundary
 Sector 'other', product 'CO₂ transport' / 'CO₂ storage'
- ٠

 - The amount of CO₂ entering the system boundary should be included as a project emission under processes (it is not relevant whether the original source was biogenic)
- Ell projects that capture CO₂ within the system boundary and transfer it for utilisation ٠
 - Sector determined by the principal product
 - The CO_2 stream that is subject to capture should be included as a project emission under processes (EII) methodology) (biogenic CO₂ would be zero rated)
 - The CO2 utilisation may be by a third party (i.e. outside the system boundary)
 - The CO2 utilisation must be additional (e.g. it cannot be for an existing CO₂-utilising facility)
- EII projects that utilise captured CO₂ ٠
 - Sector determined by the principal product
 - The CO₂ may be utilised in producing principal and/or non-principal products

A CCS/U credit should be calculated following the rules in Chapter 3 of the GHG ٠ methodology

Slido #IF23Call

Calculating a carbon capture credit (CC_{credit})

- Note: the CC_{storage,y} and CC_{use,y} terms should already exclude CO₂ lost to leakage
- It is therefore not obligatory to explicitly characterise leakage at each step
- You should still justify your assumptions, including as they relate to leakage rates

Parameter	=	Equation
CC _{transport,y}	=	$CC_{transport,road,y} + CC_{transport,rail,y} + CC_{transport,maritime,y}$
CC _{transport,road,y}	=	$\sum_{L=1}^{I} (Kroad_{,L} * CO_{2road,L} * EFroad * 10-3)$
CC _{transport,rail,y}	=	$\sum_{L=1}^{T} (\text{Krail}_{L} * \text{CO}_{2\text{rail},L} * \text{EFrail} * 10-3)$
CC _{transport,maritime,y}	=	$\sum_{L=1}^{} (\text{Kmaritime}_{,L} * \text{CO}_{2\text{maritime},L} * \text{EFmaritime} * 10-3)$

Slido **#IF23Call**

Reference emissions for DACCS and BECCS

- Where a project consists solely of the installation of a direct air capture facility or of a carbon capture unit at a biomass power facility, with the captured CO₂ sent for permanent storage, then the reference scenario emissions shall be set to zero
- For these cases, the relative emission saving cannot be calculated in the normal way, and therefore it shall be declared as 200%
- This makes DACCS and BECCS projects eligible to record bonus points for net carbon removal

Net carbon removals

- Applicable if total project emissions are negative...
 - ...excluding any credit for timed operation
 - ...and where non-principal products are not the only source of negative emissions

$$\widehat{\Delta GHG}_{rel} = \frac{\Delta GHG_{abs} + \sum_{y=1}^{10} (TO_y)}{\sum_{y=1}^{10} (Ref_y)} (> 100\%)$$

∆ GHG _{abs}	

10

 $\overline{y=1}$

,	Reference (Ref.)
•	· y·

Inputs

+

Processes

(incl. carbon capture)

+

Combustion

(principal products)

+

End of life

(principal products)

+

Non-principal products

Project (Proj_y) Inputs + Processes (incl. carbon capture) + Combustion (principal products)

Non-principal products

