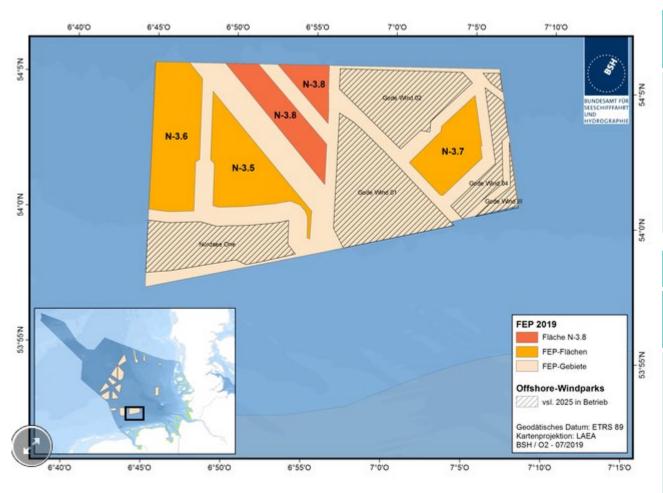


The next generation of offshore wind farms integrated with green hydrogen

Financing Innovative Clean Tech conference

2023-01-19


Disclaimer:

The information contained in this document is confidential, privileged and only for the information of the intended recipient and may not be used, published or redistributed without the prior written consent. The opinions expressed are in good faith and while every care has been taken in preparing these documents, the managing directors make no representations and give no warranties of whatever nature in respect of these documents, including but not limited to the accuracy or completeness of any information, facts and/or opinions contained therein. The project companies, its affiliates, the directors, employees and agents cannot be held liable for the use of and reliance of the opinions, estimates, forecasts and findings in these documents.

Introduction Nordsee Two Offshore Windfarm

Part of the Nordseecluster

Joint development of four offshore wind areas by RWE & Northland Power

- N-3.8 ~ 433 MW (Nordsee Two)
- N-3.7 ~ 225 MW
- N-3.5 ~ 420 MW
- N-3.6 ~ 480 MW

Development as a cluster in two stages

Stage one: Nordseecluster Phase A

- COD: December 2026
- Areas: N-3.8 + N-3.7
- Grid Connection

Capacity: 658 MW

Stage two: Nordseecluster Phase B

- COD: December 2028
- Areas: N-3.6 + N-3.5
- Grid Connection

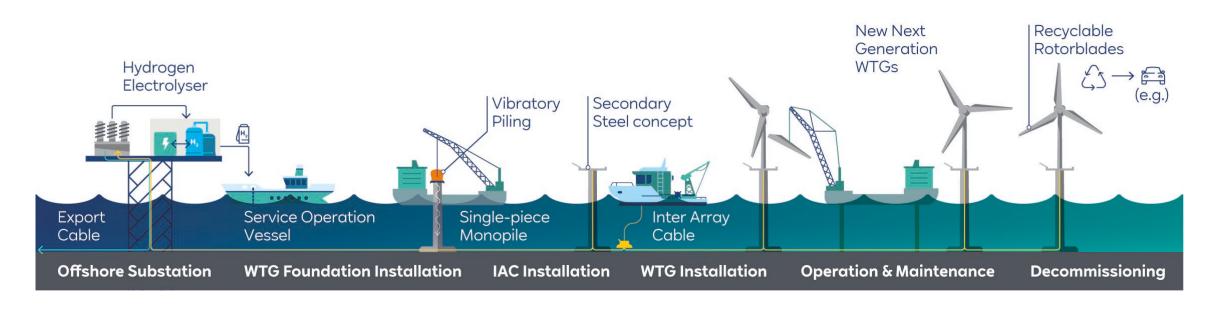
Capacity: 900 MW

Introduction Nordsee Two Offshore Windfarm

Overall Nordseecluster

Key Metrics	Unit	Value ¹
Total Annual Power Production	MWh/year	6,400,000
Supply of Households (4 persons)	No.	1,600,000
Estimated Annual Emission Savings	tCO2e	2,700,000 ²
Total Investment Volume	EUR	4,000,000,000
EEG Subsidy	EUR	0.00

Overview of WTG with Foundation Rotor diameter: ca. 236 m (min. - max.: 220 m - 250 m) Tip height: ca. LAT + (min. - max.: 246 m Hub height: ca. LAT 4 (min. - max: 136 m -**Blade Tip Clearance:** ca. LAT + 26 m Elbphilharmonie height for scale: 110 m Interface height Foundation - Tower: ca. LAT + 20 m LAT = Lowest Astronomical Tide (ca. 1.2 m below mean sea level)


¹ Preliminary estimates; approximate values

²>1% of total emissions from German power production; baseline 2022 Emissions Germany

Innovation Project Overview

Objective: Greenhouse gas reduction

Innovations around Green Hydrogen

- 4 MW Electrolyser on OSS
- 100% replacement of diesel for emergency generator by green hydrogen
- 80% replacement of diesel for SOV by green hydrogen

Innovations around Foundations

- Single-piece monopiles
- 10% green steel
- Vibratory piling

Innovations around WTG

- Rating: 15 MW or higher
- Rotor diameters: 220-240m or higher
- Recycable Rotorblades

Objective Greenhouse Gas Emission Reduction

Contributing to EU emission reduction goals

Electricity

	l lucia	NOOME	Scalability potential		
	Unit	N2OWF	Within NSC	In DE until 2030 ¹	In EU until 2030 ¹
Production of electricity	GWh/year	1,845	4,555	35,792	276,494
CO2 emission savings ²	t/years	324,167	800,314	6,288,654	48,579,996

Green Hydrogen

Production of	Usage of green hydrogen Replacement of Diesel during Operations		CO2 emission savings	Scalability potential	
green hydrogen	OSS emergency generator	Service Operation Vessel	Saviligs	Scalability potential	
t/year	t/year	t/year	t/year	Offshore Wind SectorOffshore HydrogenShipping/maritime industry	
460	4	335	4,644		

¹ Scaled by MW

² EU 2030 Reference Scenario

Challenges and risks

Permitting process

- Permitting process for OWF had to start before Innovation Fund award
- Unclear permitting process for new technologies

Insurability

- Uncertainty about availability of insurances for new technologies
- Reduction in markets by introducing innovative technologie

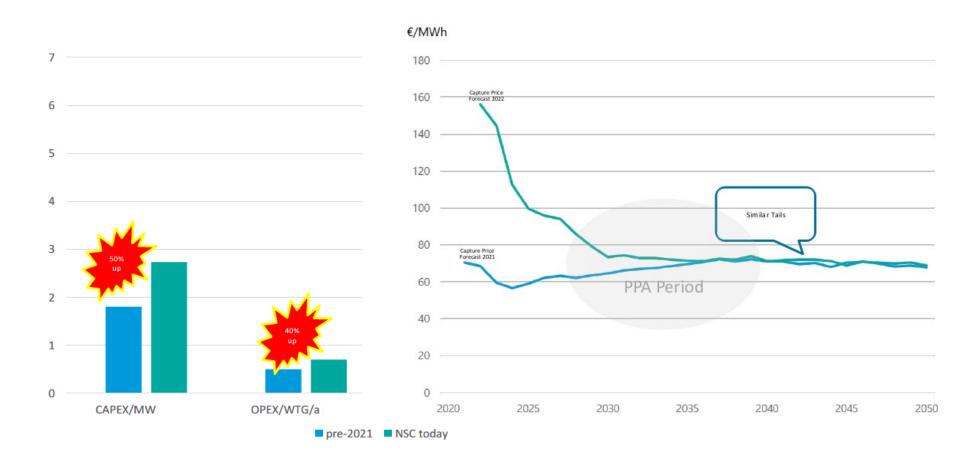
Financing

- Innovative technologies reduce list of available lenders and drive margins
- Carve-out of innovative technologies from financing if separation from other assets possible

Supplier availability

- Strong market demand leaves only few OSS suppliers in the market available
- Integration of new technologies is challenging for suppliers under given timeframe

Supply and Service price increase


 Prices for supply of materials and services have increased significantly due to war and inflation, leading to a significant cost increase for the project

Development of Offshore Wind economics 2020 - 2022

The markets upside down

Prices skyrocket...revenue prospective unchanged

Thank you for your attention!